Browse > Article
http://dx.doi.org/10.3340/jkns.2020.0359

Embryonal Neuromesodermal Progenitors for Caudal Central Nervous System and Tissue Development  

Shaker, Mohammed R. (Australian Institute for Bioengineering and Nanotechnology, The University of Queensland)
Lee, Ju-Hyun (Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine)
Sun, Woong (Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine)
Publication Information
Journal of Korean Neurosurgical Society / v.64, no.3, 2021 , pp. 359-366 More about this Journal
Abstract
Neuromesodermal progenitors (NMPs) constitute a bipotent cell population that generates a wide variety of trunk cell and tissue types during embryonic development. Derivatives of NMPs include both mesodermal lineage cells such as muscles and vertebral bones, and neural lineage cells such as neural crests and central nervous system neurons. Such diverse lineage potential combined with a limited capacity for self-renewal, which persists during axial elongation, demonstrates that NMPs are a major source of trunk tissues. This review describes the identification and characterization of NMPs across multiple species. We also discuss key cellular and molecular steps for generating neural and mesodermal cells for building up the elongating trunk tissue.
Keywords
Neuromesodermal progenitors; Axial elongation; Spinal cord development; Neurulation; Neural tube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cunningham TJ, Colas A, Duester G : Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 5 : 1821-1833, 2016   DOI
2 Cunningham TJ, Kumar S, Yamaguchi TP, Duester G : Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn 244 : 797-807, 2015   DOI
3 Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014   DOI
4 Dessaud E, McMahon AP, Briscoe J : Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135 : 2489-2503, 2008   DOI
5 Diez del Corral R, Morales AV : The multiple roles of FGF signaling in the developing spinal cord. Front Cell Dev Biol 5 : 58, 2017   DOI
6 Martin BL : Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 49 : 59-67, 2016   DOI
7 McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe PA, Gilhooley HJ, et al. : Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135 : 2289-2299, 2008   DOI
8 Martin BL, Kimelman D : Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev 24 : 2778-2783, 2010   DOI
9 Martin BL, Kimelman D : Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 15 : 121-133, 2008   DOI
10 Martin BL, Kimelman D : Wnt signaling and the evolution of embryonic posterior development. Curr Biol 19 : R215-R219, 2009   DOI
11 Morley RH, Lachani K, Keefe D, Gilchrist MJ, Flicek P, Smith JC, et al. : A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A 106 : 3829-3834, 2009   DOI
12 Mugele D, Moulding DA, Savery D, Mole MA, Greene ND, Martinez-Barbera JP, et al. : Genetic approaches in mice demonstrate that neuromesodermal progenitors express T/Brachyury but not Sox2. bioRxiv, 2018 [Epub ahead of print]
13 Muller F, O'rahilly R : The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs 177 : 2-20, 2004   DOI
14 Mulvaney J, Dabdoub A : Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 13 : 281-293, 2012   DOI
15 Olivera-Martinez I, Harada H, Halley PA, Storey KG : Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10 : e1001415, 2012   DOI
16 Shaker MR, Kim JY, Kim H, Sun W : Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro. Stem Cells Dev 24 : 1171-1181, 2015   DOI
17 Pai YJ, Abdullah NL, Mohd-Zin SW, Mohammed RS, Rolo A, Greene ND, et al. : Epithelial fusion during neural tube morphogenesis. Birth Defects Res A Clin Mol Teratol 94 : 817-823, 2012   DOI
18 Rodrigo Albors A, Halley PA, Storey KG : Lineage tracing of axial progenitors using Nkx1-2CreERT2 mice defines their trunk and tail contributions. Development 145 : dev164319, 2018   DOI
19 Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, et al. : Tbx6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification. Cell Stem Cell 23 : 382-395.e5, 2018   DOI
20 Shaker MR, Lee JH, Kim KH, Kim VJ, Kim JY, Lee JY, et al. : Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. bioRxiv, 2020 [Epub ahead of print]
21 Shaker MR, Lee JH, Park SH, Kim JY, Son GH, Son JW, et al. : Anteroposterior Wnt-RA gradient defines adhesion and migration properties of neural progenitors in developing spinal cord. Stem Cell Reports 15 : 898-911, 2020   DOI
22 Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011   DOI
23 Koch F, Scholze M, Wittler L, Schifferl D, Sudheer S, Grote P, et al. : Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev Cell 42 : 514-526.e7, 2017   DOI
24 Shum AS, Tang LS, Copp AJ, Roelink H : Lack of motor neuron differentiation is an intrinsic property of the mouse secondary neural tube. Dev Dyn 239 : 3192-3203, 2010   DOI
25 Tahara N, Kawakami H, Chen KQ, Anderson A, Yamashita Peterson M, Gong W, et al. : Sall4 regulates neuromesodermal progenitors and their descendants during body elongation in mouse embryos. Development 146 : dev177659, 2019   DOI
26 Ille F, Atanasoski S, Falk S, Ittner LM, Marki D, Buchmann-Moller S, et al. : Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Dev Biol 304 : 394-408, 2007   DOI
27 Javali A, Misra A, Leonavicius K, Acharyya D, Vyas B, Sambasivan R : Co-expression of Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. Development 144 : 4522-4529, 2017   DOI
28 Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y : Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 461 : 160-171, 2020   DOI
29 Lee JH, Shin H, Shaker MR, Kim HJ, Kim JH, Lee N, et al. : Human spinal cord organoids exhibiting neural tube morphogenesis for a quantifiable drug screening system of neural tube defects. bioRxiv, 2020 [Epub ahead of print]
30 Lee JY, Lee ES, Kim SP, Lee MS, Phi JH, Kim SK, et al. : Neurosphere formation potential resides not in the caudal cell mass, but in the secondary neural tube. Int J Dev Biol 61 : 545-550, 2017   DOI
31 Li W, Germain RN, Gerner MY : Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc Natl Acad Sci U S A 114 : E7321-E7330, 2017   DOI
32 Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. : Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7 : e31657, 2018   DOI
33 Fior R, Maxwell AA, Ma TP, Vezzaro A, Moens CB, Amacher SL, et al. : The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1. Development 139 : 4656-4665, 2012   DOI
34 Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ, et al. : Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 4 : 632-644, 2015   DOI
35 Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, et al. : Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 141 : 1209-1221, 2014   DOI
36 Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF : Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17 : 365-376, 2009   DOI
37 Verrier L, Davidson L, Gierlinski M, Dady A, Storey KG : Neural differentiation, selection and transcriptomic profiling of human neuromesodermal progenitor-like cells in vitro. Development 145 : dev166215, 2018   DOI
38 Yang HJ, Lee DH, Lee YJ, Chi JG, Lee JY, Phi JH, et al. : Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst 30 : 73-82, 2014   DOI
39 Aires R, Dias A, Mallo M : Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 55 : 81-86, 2018   DOI
40 Evans AL, Faial T, Gilchrist MJ, Down T, Vallier L, Pedersen RA, et al. : Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One 7 : e33346, 2012   DOI
41 Chalamalasetty RB, Garriock RJ, Dunty WC Jr, Kennedy MW, Jailwala P, Si H, et al. : Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development 141 : 4285-4297, 2014   DOI
42 Amin S, Neijts R, Simmini S, van Rooijen C, Tan SC, Kester L, et al. : Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep 17 : 3165-3177, 2016   DOI
43 Attardi A, Fulton T, Florescu M, Shah G, Muresan L, Lenz MO, et al. : Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145 : dev166728, 2018   DOI
44 Berenguer M, Lancman JJ, Cunningham TJ, Dong PDS, Duester G : Mouse but not zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis extension. Dev Biol 441 : 127-131, 2018   DOI
45 Costanzo R, Watterson RL, Schoenwolf GC : Evidence that secondary neurulation occurs autonomously in the chick embryo. J Exp Zool 219 : 233-240, 1982   DOI
46 Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, et al. : In vitro generation of neuromesodermal progenitors reveals distinct roles for Wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12 : e1001937, 2014   DOI
47 Garriock RJ, Chalamalasetty RB, Kennedy MW, Canizales LC, Lewandoski M, Yamaguchi TP : Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142 : 1628-1638, 2015   DOI
48 Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, et al. : A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41 : 243-261.e7, 2017   DOI
49 Gouti M, Metzis V, Briscoe J : The route to spinal cord cell types: a tale of signals and switches. Trends Genet 31 : 282-289, 2015   DOI
50 Halpern ME, Ho RK, Walker C, Kimmel CB : Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75 : 99-111, 1993   DOI
51 Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A : Wnt signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev 18 : 2712-2717, 2004   DOI
52 Hubaud A, Pourquie O : Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15 : 709-721, 2014   DOI