References
- Aires R, Dias A, Mallo M : Deconstructing the molecular mechanisms shaping the vertebrate body plan. Curr Opin Cell Biol 55 : 81-86, 2018 https://doi.org/10.1016/j.ceb.2018.05.009
- Amin S, Neijts R, Simmini S, van Rooijen C, Tan SC, Kester L, et al. : Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep 17 : 3165-3177, 2016 https://doi.org/10.1016/j.celrep.2016.11.069
- Attardi A, Fulton T, Florescu M, Shah G, Muresan L, Lenz MO, et al. : Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145 : dev166728, 2018 https://doi.org/10.1242/dev.166728
- Berenguer M, Lancman JJ, Cunningham TJ, Dong PDS, Duester G : Mouse but not zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis extension. Dev Biol 441 : 127-131, 2018 https://doi.org/10.1016/j.ydbio.2018.06.019
- Chalamalasetty RB, Garriock RJ, Dunty WC Jr, Kennedy MW, Jailwala P, Si H, et al. : Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development 141 : 4285-4297, 2014 https://doi.org/10.1242/dev.110908
- Costanzo R, Watterson RL, Schoenwolf GC : Evidence that secondary neurulation occurs autonomously in the chick embryo. J Exp Zool 219 : 233-240, 1982 https://doi.org/10.1002/jez.1402190212
- Cunningham TJ, Colas A, Duester G : Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 5 : 1821-1833, 2016 https://doi.org/10.1242/bio.020891
- Cunningham TJ, Kumar S, Yamaguchi TP, Duester G : Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn 244 : 797-807, 2015 https://doi.org/10.1002/dvdy.24275
- Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014 https://doi.org/10.1523/JNEUROSCI.1850-14.2014
- Dessaud E, McMahon AP, Briscoe J : Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135 : 2489-2503, 2008 https://doi.org/10.1242/dev.009324
- Diez del Corral R, Morales AV : The multiple roles of FGF signaling in the developing spinal cord. Front Cell Dev Biol 5 : 58, 2017 https://doi.org/10.3389/fcell.2017.00058
- Evans AL, Faial T, Gilchrist MJ, Down T, Vallier L, Pedersen RA, et al. : Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One 7 : e33346, 2012 https://doi.org/10.1371/journal.pone.0033346
- Fior R, Maxwell AA, Ma TP, Vezzaro A, Moens CB, Amacher SL, et al. : The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1. Development 139 : 4656-4665, 2012 https://doi.org/10.1242/dev.078923
- Garriock RJ, Chalamalasetty RB, Kennedy MW, Canizales LC, Lewandoski M, Yamaguchi TP : Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142 : 1628-1638, 2015 https://doi.org/10.1242/dev.111922
- Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, et al. : A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41 : 243-261.e7, 2017 https://doi.org/10.1016/j.devcel.2017.04.002
- Gouti M, Metzis V, Briscoe J : The route to spinal cord cell types: a tale of signals and switches. Trends Genet 31 : 282-289, 2015 https://doi.org/10.1016/j.tig.2015.03.001
- Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, et al. : In vitro generation of neuromesodermal progenitors reveals distinct roles for Wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12 : e1001937, 2014 https://doi.org/10.1371/journal.pbio.1001937
- Halpern ME, Ho RK, Walker C, Kimmel CB : Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75 : 99-111, 1993 https://doi.org/10.1016/S0092-8674(05)80087-X
- Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A : Wnt signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev 18 : 2712-2717, 2004 https://doi.org/10.1101/gad.1248604
- Hubaud A, Pourquie O : Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15 : 709-721, 2014 https://doi.org/10.1038/nrm3891
- Ille F, Atanasoski S, Falk S, Ittner LM, Marki D, Buchmann-Moller S, et al. : Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Dev Biol 304 : 394-408, 2007 https://doi.org/10.1016/j.ydbio.2006.12.045
- Javali A, Misra A, Leonavicius K, Acharyya D, Vyas B, Sambasivan R : Co-expression of Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. Development 144 : 4522-4529, 2017 https://doi.org/10.1242/dev.153262
- Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y : Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 461 : 160-171, 2020 https://doi.org/10.1016/j.ydbio.2020.02.007
- Koch F, Scholze M, Wittler L, Schifferl D, Sudheer S, Grote P, et al. : Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev Cell 42 : 514-526.e7, 2017 https://doi.org/10.1016/j.devcel.2017.07.021
- Lee JH, Shin H, Shaker MR, Kim HJ, Kim JH, Lee N, et al. : Human spinal cord organoids exhibiting neural tube morphogenesis for a quantifiable drug screening system of neural tube defects. bioRxiv, 2020 [Epub ahead of print]
- Lee JY, Lee ES, Kim SP, Lee MS, Phi JH, Kim SK, et al. : Neurosphere formation potential resides not in the caudal cell mass, but in the secondary neural tube. Int J Dev Biol 61 : 545-550, 2017 https://doi.org/10.1387/ijdb.160344kw
- Li W, Germain RN, Gerner MY : Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc Natl Acad Sci U S A 114 : E7321-E7330, 2017 https://doi.org/10.1073/pnas.1708981114
- Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. : Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7 : e31657, 2018 https://doi.org/10.7554/elife.31657
- Lippmann ES, Williams CE, Ruhl DA, Estevez-Silva MC, Chapman ER, Coon JJ, et al. : Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 4 : 632-644, 2015 https://doi.org/10.1016/j.stemcr.2015.02.018
- Martin BL : Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 49 : 59-67, 2016 https://doi.org/10.1016/j.semcdb.2015.11.014
- Martin BL, Kimelman D : Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev 24 : 2778-2783, 2010 https://doi.org/10.1101/gad.1962910
- Martin BL, Kimelman D : Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 15 : 121-133, 2008 https://doi.org/10.1016/j.devcel.2008.04.013
- Martin BL, Kimelman D : Wnt signaling and the evolution of embryonic posterior development. Curr Biol 19 : R215-R219, 2009 https://doi.org/10.1016/j.cub.2009.01.052
- McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe PA, Gilhooley HJ, et al. : Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135 : 2289-2299, 2008 https://doi.org/10.1242/dev.022020
- Morley RH, Lachani K, Keefe D, Gilchrist MJ, Flicek P, Smith JC, et al. : A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A 106 : 3829-3834, 2009 https://doi.org/10.1073/pnas.0808382106
- Mugele D, Moulding DA, Savery D, Mole MA, Greene ND, Martinez-Barbera JP, et al. : Genetic approaches in mice demonstrate that neuromesodermal progenitors express T/Brachyury but not Sox2. bioRxiv, 2018 [Epub ahead of print]
- Muller F, O'rahilly R : The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs 177 : 2-20, 2004 https://doi.org/10.1159/000078423
- Mulvaney J, Dabdoub A : Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 13 : 281-293, 2012 https://doi.org/10.1007/s10162-012-0317-4
- Olivera-Martinez I, Harada H, Halley PA, Storey KG : Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10 : e1001415, 2012 https://doi.org/10.1371/journal.pbio.1001415
- Pai YJ, Abdullah NL, Mohd-Zin SW, Mohammed RS, Rolo A, Greene ND, et al. : Epithelial fusion during neural tube morphogenesis. Birth Defects Res A Clin Mol Teratol 94 : 817-823, 2012 https://doi.org/10.1002/bdra.23072
- Rodrigo Albors A, Halley PA, Storey KG : Lineage tracing of axial progenitors using Nkx1-2CreERT2 mice defines their trunk and tail contributions. Development 145 : dev164319, 2018 https://doi.org/10.1242/dev.164319
- Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, et al. : Tbx6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification. Cell Stem Cell 23 : 382-395.e5, 2018 https://doi.org/10.1016/j.stem.2018.07.001
- Shaker MR, Kim JY, Kim H, Sun W : Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro. Stem Cells Dev 24 : 1171-1181, 2015 https://doi.org/10.1089/scd.2014.0506
- Shaker MR, Lee JH, Kim KH, Kim VJ, Kim JY, Lee JY, et al. : Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. bioRxiv, 2020 [Epub ahead of print]
- Shaker MR, Lee JH, Park SH, Kim JY, Son GH, Son JW, et al. : Anteroposterior Wnt-RA gradient defines adhesion and migration properties of neural progenitors in developing spinal cord. Stem Cell Reports 15 : 898-911, 2020 https://doi.org/10.1016/j.stemcr.2020.08.016
- Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011 https://doi.org/10.1111/j.1440-169X.2011.01260.x
- Shum AS, Tang LS, Copp AJ, Roelink H : Lack of motor neuron differentiation is an intrinsic property of the mouse secondary neural tube. Dev Dyn 239 : 3192-3203, 2010 https://doi.org/10.1002/dvdy.22457
- Tahara N, Kawakami H, Chen KQ, Anderson A, Yamashita Peterson M, Gong W, et al. : Sall4 regulates neuromesodermal progenitors and their descendants during body elongation in mouse embryos. Development 146 : dev177659, 2019 https://doi.org/10.1242/dev.177659
- Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, et al. : Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 141 : 1209-1221, 2014 https://doi.org/10.1242/dev.101014
- Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF : Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17 : 365-376, 2009 https://doi.org/10.1016/j.devcel.2009.08.002
- Verrier L, Davidson L, Gierlinski M, Dady A, Storey KG : Neural differentiation, selection and transcriptomic profiling of human neuromesodermal progenitor-like cells in vitro. Development 145 : dev166215, 2018 https://doi.org/10.1242/dev.166215
- Yang HJ, Lee DH, Lee YJ, Chi JG, Lee JY, Phi JH, et al. : Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst 30 : 73-82, 2014 https://doi.org/10.1007/s00381-013-2192-7