• Title/Summary/Keyword: Spin-valve

Search Result 227, Processing Time 0.025 seconds

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

Detection Property of Red Blood Cell-Magnetic Beads Using Micro Coil-Channel and GMR-SV Device

  • Park, Ji-Soo;Kim, Nu-Ri;Jung, Hyun-Jun;Khajidmaa, Purevdorj;Bolormaa, Munkhbat;Lee, Sang-Suk
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2015.05a
    • /
    • pp.161-163
    • /
    • 2015
  • The micro device, coil, and channel for the biosensor integrated with the GMR-SV device based on the antiferromagnetic IrMn layer was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ passed on the micro channel, the movement of RBC + ${\mu}Beads$ is controlled by the electrical AC input signal. The RBC + ${\mu}Beads$ having a micro-magnetic field captured above the GMR-SV device is changed as the output signals for detection status. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property as the membrane's deformation of RBC coupled to magnetic beads.

  • PDF

Characteristics of GMR-SV Sensor for Measurement of Mineral Contents in Edible Water

  • Kim, Da-Woon;Lee, Ju-Hee;Kim, Min-Ji;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2009
  • The mineral dissolution sensor system using GMR-SV and glass/Mg(200 nm) was prepared and characterized. The magnetic field sensitivity of GMR-SV to microscopic magnetic variation was about 0.8%/Oe. The change that occurs when Mg-film dissolves in water, the solubility of water, which is one of the basic properties of mineral water, was sensed by measuring the subtle variation of an electric current. In the case of edible water with Mg mineral added, bubbles were generated on the surface of the Mg film in the first 45 minutes, and the number of drops that were dissolved more rapidly than with the tap and DI waters later reduced to zero. For the edible water samples that each had different mineral Mg concentrations, the Mg solubility speed significantly differed. After injecting Mg film into the edible water, the magnetoresistance of the output GMR-SV signal decreased from a maximum of $45.4\;{\Omega}$ to a minimum of $43.6\;{\Omega}$. The measurement time was within 1 min, giving the rate of change ${\Delta}R/{\Delta}t=0.18\;{\Omega}/s$. This measurement system can be applied to develop a mineral Mg solubility GMR-SV sensor that can be used to sense the change from edible water to reduced alkali.

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Magnetoresistance characteristics of EeN/Co/Cu/Co system spin-valve type multilayer (FeN/Co/Cu/Co계 spin-valve형 다층악의 자기저항 특성)

  • 이한춘;송민석;윤성호;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.210-219
    • /
    • 2000
  • The magnetoresistance characteristics of FeN/Co/Cu/Co and FeN/Co/Cu/Co/Cu/Co/FeN multilayers using ferromagnetic iron-nitrides (FeN) has been studied. The microstructure of FeN film is the mixed ${\alpha}$-Fe and $\varepsilon$-Fe$_3$N phase on the condition that the flow rate of N$_2$ gas is over 0.4 sccm. The magnetoresistance effect is observed because of shape magnetic anisotropy induced by needle-shaped $\varepsilon$-Fe$_3$N phase. This magnetoresistance effect changes, because the degree that the shape magnetic anisotropy adheres to the adjacent Co pinned layer is varied according to the flow rate of N$_2$ gas and the thickness of FeN film. The best magnetoresistance effect is obtained on the condition that the thickness of Co free layer is 70 ${\AA}$ and the maximum MR ratio(%) value of 3.2% shows in the FeN(250 ${\AA}$)/Co(70 ${\AA}$)/Cu(25 ${\AA}$)/Co(70 ${\AA}$)/Cu(25 ${\AA}$)/Co(70 ${\AA}$)/FeN(250 ${\AA}$) mutilayer film which is fabricated at the N, gas flow rate of 0.5 sccm and the FeN film thickness of 250 ${\AA}$. Four steps are observed in the magnetoresistance curve owing to this difference of coercive force, because respective magnetic layers in the multilayer possess different coercive forces. These effects observed in these mutilayer films can be expected to application to the memory device the same MRAM as can carry out simultaneously four signals.

  • PDF

Magnetoresistance effects in [Co/Cu/NiFe/Cu] Spin-valve Multilayers ([Co/Cu/NiFe/Cu] 다층박막의 자기저항효과에 관한 연구)

  • 정진봉;박창만;이기암;황도근;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.203-209
    • /
    • 1995
  • A study of the dependence of the magnetoresistance in $glass\[Cu_{x\AA}\NiFe_{50\AA}\Cu_{x\AA}\Co_{50\AA}](X;\=\;8,\;10,\;14,\;18,\;22,\;26,\;28,\;38,\;48,\;58\;\AA,\;N\;=\;2,\;3,\;4,\;10,\;20)$ multilayers prepared by dc magnetron sputtering on the interlayer thickness of Cu (X), the number of multylayer(N) and annealing temperature has been performed. Resistance measurement were made by four terminal method, and the magnetic field applied to perpendicular and parallel for the current. The maximum magnetoresistance(MR) ratio(%) was appeared in the vicinity of $10\;\AA$ in Cu layer, and it was oscillated with the thickness of Cu. The MR ratio was increased with the number of layers N, however the ratio for the N = 4 layers decreased rather than the N = 3 layers. The dependence of the ratio on the annealing temperature was increased to $250^{\circ}C$.

  • PDF

Characteristics of Mineral Mg Dissolving Sensor in Edible Water using GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 음용수 미네랄 Mg 용해센서 특성 연구)

  • Lee, Ju-Hee;Kim, Da-Woon;Kim, Min-Ji;Park, Kwang-Seo;Kang, Joon-Ho;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.174-179
    • /
    • 2008
  • The measurement dissolution sensor system using GMR-SV device with magnetic sensitivity of 0.8 %/Oe and Mg-film thick of 200 nm and Mg-foil thick of 50 mm was fabricated and characterized. During the water dissolving process of Mg-film and Mg-foil, the subtle variation of magnetic field by the decrease of current in solenoid was detected by the GMR-SV sensor. The variations of Mg bubble number and ORP as a function of time for three different kinds of edible, tap, and distilled water, are measured and compared. A After 45 min, the speed of fast dissolving Mg was shown the order of edible > tap > DI water. The variation of output magnetoresistance as a function of dissolved time of Mg-film and Mg-foil for edible water, which is composed of mineral content of $0.8{\sim}5.4\;mg/l$ was investigated. The response times for the dissolution in edible water were 5 min and 20 min, respectively. From the measurement of dissolving time and speed for Mg-film and Mg-foil using GMR-SV device, the mineral Mg sensor system in edible water can be possible to develop.