Browse > Article
http://dx.doi.org/10.4283/JMAG.2009.14.2.080

Characteristics of GMR-SV Sensor for Measurement of Mineral Contents in Edible Water  

Kim, Da-Woon (Kangwon Science High School)
Lee, Ju-Hee (Kangwon Science High School)
Kim, Min-Ji (Kangwon Science High School)
Lee, Sang-Suk (Dept. of Oriental Biomedical Engineering, Sangji University)
Publication Information
Abstract
The mineral dissolution sensor system using GMR-SV and glass/Mg(200 nm) was prepared and characterized. The magnetic field sensitivity of GMR-SV to microscopic magnetic variation was about 0.8%/Oe. The change that occurs when Mg-film dissolves in water, the solubility of water, which is one of the basic properties of mineral water, was sensed by measuring the subtle variation of an electric current. In the case of edible water with Mg mineral added, bubbles were generated on the surface of the Mg film in the first 45 minutes, and the number of drops that were dissolved more rapidly than with the tap and DI waters later reduced to zero. For the edible water samples that each had different mineral Mg concentrations, the Mg solubility speed significantly differed. After injecting Mg film into the edible water, the magnetoresistance of the output GMR-SV signal decreased from a maximum of $45.4\;{\Omega}$ to a minimum of $43.6\;{\Omega}$. The measurement time was within 1 min, giving the rate of change ${\Delta}R/{\Delta}t=0.18\;{\Omega}/s$. This measurement system can be applied to develop a mineral Mg solubility GMR-SV sensor that can be used to sense the change from edible water to reduced alkali.
Keywords
GMR-SV (giant magnetoresistance-spin valve); Mg-film; Mineral edible water; ORP (oxidation reduction potential);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. H. Lee, Physics and Technology (KPS) February, 3 (2003)
2 A. J. Swallow, Nature 222, 369 (1969).   DOI
3 D. R. Baselt, G. U. Lee, and R. J. Colton, J. Vac. Sci. Technol. B 14, 789 (1996).   DOI
4 Y. Tanaka, K. Kikuchi, Y. Saihara, and Z. Ogumi, Electrochimica Acta 50, 5229 (2005).   DOI   ScienceOn
5 J. Vilcáez, K. Suto, and C. Inoue, Inter. J. Mineral Processing 88, 37 (2008).   DOI   ScienceOn
6 S. K. Kim, S. C. Shin, and K. Y. Kim, J. Kor. Phys. Soc. 39, 1060 (2001).
7 M. C. Ahn, S. D. Choi, H. W. Joo, G. W. Kim, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Kor. Magn. 17, 156 (2007).   과학기술학회마을   DOI   ScienceOn
8 F. A. Cotton, G. Wilkinson, and P. L. Gauss, “Basic Iorganic Chemistry”, Third Edition, John Wiley & Sons, Inc., Chapter 9 (1996)
9 S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magnetics. 13, 30 (2008).   과학기술학회마을   DOI   ScienceOn
10 S. Shirahata, S. Kabayama, M. Nakano, et al., Biochem. Biophys. Res. Commun. 234, 269 (1981).   DOI   ScienceOn
11 D. R. Baselt, G. U. Lrr, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, Biosens. & Bioelec. 13, 731 (1998).   DOI   ScienceOn
12 G. Du, B. Wang, Earth Science Frontiers 15, 142 (2008).   DOI   ScienceOn
13 L. Frank, J. B. Sigwarth, and J. D. Craven, Geophys. Res. Lett. 12, 303 (1986).   DOI
14 M. Armbruster, H. Haberland, and H. G. Schinder, Phys. Rev. Lett. 47, 323 (1981).   DOI
15 J. S. In, S. H. Kim, J. Y. Kang, A. Tiwari, and J. I. Hong, J. Magnetics 12, 118 (2007).   과학기술학회마을   DOI   ScienceOn
16 M. Banhidi, Metal Finishing 105, 518 (2007).   DOI   ScienceOn