• Title/Summary/Keyword: Spin-orbit splitting

Search Result 79, Processing Time 0.027 seconds

Growth and Photocurrent Study on the Splitting of the Valence Band for $CuInSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Walll Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Yun, Seok-Jin;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62{\times}10^{l6}\;cm^{-3}$ and $296\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.1851\;eV\;-\;(8.99{\times}10^{-4}\;eV/K)T^2/(T+153K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuInSe_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}_{so}$ definitely exists in the $\Gamma_6$ states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $Cdln_2Te_4$ single crystal by Bridgman method (Bridgman법에 의한 $Cdln_2Te_4$단결정의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • 홍광준;이관교;이봉주;박진성;신동찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • A stoichiometric mixture for $CdIn_2Te_4$ single crystal was prepared from horizontal electric furnace. The $CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The $CdIn_2Te_4$ single crystal was evaluated to be tetragonal by the power method. The (001) growth plane of oriented $CdIn_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $CdIn_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61\times 1016 \textrm {cm}^{-3}$ and 242 $\textrm{cm}^2$/V.s at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $1.4750ev - (7.69\times10^{-3})\; ev/k)\;T^2$/(T + 2147k).The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2Te_4$ single crystal have been estimated to be 0.2704 eV and 0.1465 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the $\Gamma_7$ states of the valence band of the $CdIn_2Te_4$ single crystal. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-} B_{1-}$ and Cl-exciton peaks for n = 1.

Study on energy of valence-band splitting from photocurrent spectrum of photoconductive $CdGa_2Se_4$ thin films

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.66-66
    • /
    • 2009
  • The photoconductive $CdGa_2Se_4$ layer was grown through the hot wall epitaxy method. From the photocurrent (PC) measurements, the three peaks in the PC spectra were associated with the band-to-band transitions. The PC intensities were observed to decrease with decreasing temperature. The valence-band splitting on $CdGa_2Se_4$ was also observed by means of the PC spectroscopy. The crystal field splitting and the spin orbit splitting turned out to be 0.1604 and 0.4179 eV at 10 K, respectively.

  • PDF

Crystal field splitting energy for $CdGa_2Se_4$ epilayers obtained by photocurrent measurement (광전류 측정으로부터 얻어진 $CdGa_2Se_4$ 에피레이어의 결정장 갈라짐에 대한 에너지)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.144-145
    • /
    • 2009
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the poly crystal source of $CdGa_2Se_4$ at $630\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27\;\times\;10^{17}\;cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - ($7.721\;{\times}\;10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasi cubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_{11}$-exciton peaks.

  • PDF

Growth and Photocurrent Properties for $CuAlSe_2$ Single Crystal Thin film ($CuAlSe_2$ 단결정 박막의 성장과 광전류 특성)

  • Hong, Kwang-Joon;Baek, Seong-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.226-229
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68{\times}10^{-4}\;eV/K)T^2/(T+155K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Photocurrent Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $v_2$ 단결정 박막의 성장과 광전류 특성)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.282-285
    • /
    • 2003
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410\;^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}\;and\;295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}eV/K)T^2/(T\;+\;155\;K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Growth and Opoelectrical property for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Yun, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.122-123
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.9501 eV - $(8.79{\times}10^{-4}\;eV/K)T^2$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{1^-}$exciton peaks for n=1.

  • PDF

Band gap energy and photocurrent splitting for CdIn2Te4 crystal by photocurrent spectroscopy ($CdIn_2Te_4$ 결정의 띠간격 에너지의 온도 의존성과 가전자대 갈라짐에 대한 연구)

  • Hong, Kwang-Joon;Kim, Do-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.121-122
    • /
    • 2006
  • Single crystal of $CdIn_2Te_4$ were grown by the Bridgman method without using seed crystals. From photocurrent measurements, its was found that three peaks, A, B, and C, correspond to the instrinsic transition from the valence band states of ${\Gamma}_7$(A), ${\Gamma}_6$(B), and ${\Gamma}_7$(C) to the conducton band states of ${\Gamma}_6$, respectively. Crystal field splitting and spin orbit splitting were found to be at 0.2360 eV and 0.1119 eV, respectively, from found to be photocurrent spectroscopy.

  • PDF