• Title/Summary/Keyword: Spin-on method

Search Result 704, Processing Time 0.04 seconds

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

A study on the plan for the reduction of NSD noise according to path control method (패스(Path)제어 방법을 통한 NSD 소음 저감 방안에 관한 연구)

  • Kim, Seon-Jin;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.401-409
    • /
    • 2018
  • This paper presents means of reducing noise in NSD using path control methods for Light Tactical Vehicles (LTV). NSD is applied to the rear axle of LTVs for enhancing mobility. NSD can improve mobility of vehicles with a high locking ratio but causes noise under certain conditions due to its mechanical structure. This noise results from contact between gears due to the differential role of NSD. The noise affects users, so users have continually requested noise reductions. Though the noise doesn't affect product performance and durability, and satisfies the National Defense's noise condition standards, users request for noise reduction is the focus of this research. Eliminating the source of sound for LTVs is realistically limited, so this research applies a path control method to reduce noise by controlling the path which transmits the noise. This study improves the structural delivery system and examines methods of reducing noise in LTV systems.

Crystallographic orientation modulation of ferroelectric $Bi_{3.15}La_{0.85}Ti_3O_{12}$ thin films prepared by sol-gel method (Sol-gel법에 의해 제조된 강유전체 $Bi_{3.15}La_{0.85}Ti_3O_{12}$ 박막의 결정 배향성 조절)

  • Lee, Nam-Yeal;Yoon, Sung-Min;Lee, Won-Jae;Shin, Woong-Chul;Ryu, Sang-Ouk;You, In-Kyu;Cho, Seong-Mok;Kim, Kwi-Dong;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.851-856
    • /
    • 2003
  • We have investigated the material and electrical properties of $Bi_{4-x}La_xTi_3O_{12}$ (BLT) ferroelectric thin film for ferroelectric nonvolatile memory applications of capacitor type and single transistor type. The 120nm thick BLT films were deposited on $Pt/Ti/SiO_2/Si$ and $SiO_2/Nitride/SiO_2$ (ONO) substrates by the sol-gel spin coating method and were annealed at $700^{\circ}C$. It was observed that the crystallographic orientation of BLT thin films were strongly affected by the excess Bi content and the intermediate rapid thermal annealing (RTA) treatment conditions regardeless of two type substrates. However, the surface microstructure and roughness of BLT films showed dependence of two different type substrates with orientation of (111) plane and amorphous phase. As increase excess Bi content, the crystallographic orientation of the BLT films varied drastically in BLT films and exhibited well-crystallized phase. Also, the conversion of crystallographic orientation at intermediate RTA temperature of above $450^{\circ}C$ started to be observed in BLT thin films with above excess 6.5% Bi content and the rms roughness of films is decreased. We found that the electrical properties of BLT films such as the P-V hysteresis loop and leakage current were effectively modulated by the crystallographic orientations change of thin films.

  • PDF

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF

Higher Order Shimming for Ultra-fast Spiral-Scan Imaging at 3 Tesla MRI System (3 Tesla MRI 시스템에서 초고속 나선주사영상을 위한 고차 shimming)

  • Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • Purpose: To acquire high-resolution spiral-scan images at higher magnetic field, high homogeneous magnetic field is needed. Field inhomogeneity mapping and in-vivo shimming are important for rapid imaging such as spiral-scan imaging. The rapid scanning sequences are very susceptible to inhomogeneity. In this paper, we proposed a higher-order shimming method to obtain homogeneous magnetic field. Materials and Methods: To reduce measurement time for field inhomogeneity mapping, simultaneous axial/ sagittal, and coronal acquisitions are done using multi-slice based Fast Spin echo sequence. Acquired field inhomogeneity map is analyzed using the spherical harmonic functions, and shim currents are obtained by the multiplication of the pseudo-inverse of the field pattern with the inhomogeneity map. Results: Since the field inhomogeneity is increasing in proportion to the magnetic field, higher order shimming to reduce the inhomogeneity becomes more important in high field imaging. The shimming technique in which axial, sagittal, and coronal section inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the imhomogenity map is applied. The proposed technique is applicable to a localized shimming as well. High resolution spiral-scan imaging was successfully obtained with the proposed higher order shimming. Conclusion: Proposed pulse sequence for rapid measurement of inhomogeneity map and higher order shimming based on the inhomogeneity map work very well at 3 Tesla MRI system. With the proposed higher order shimming and localized higher order shimming techniques, high resolution spiral-scan images are successfully obtained at 3 T MRI system.

  • PDF

Optical Properties of $ZnIn_2S_4/GaAs$ Epilayer Grown by Hot Wall Epitaxy method (Hot Wall Epitaxy (HWE)에 의한 성장된 $ZnIn_2S_4/GaAs$ 에피레이어의 광학적 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-178
    • /
    • 2004
  • The stochiometric mixture of evaporating materials for the $ZnIn_2S_4$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_2S_4$ single crystal thin film, $ZnIn_2S_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively and the growth rate of the $ZnIn_2S_4$ sing1e crystal thin film was about $0.5\;{\mu}m/hr$. The crystalline structure of $ZnIn_2S_4$ single crystal thin film was investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $ZnIn_2S_4$ single crystal thin film measured from Hall effect by van der Pauw method are $8.51{\times}10^{17}\;cm^{-3}$, $291\;cm^2/V{\cdot}s$ at $293_{\circ}\;K$, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $ZnIn_2S_4$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_O$ and the crystal field splitting ${\Delta}Cr$ were 0.0148 eV and 0.1678 eV at $10_{\circ}\; K$, respectively. From the photoluminescence measurement of $ZnIn_2S_4$ single crystal thin film, we observed free excition $(E_X)$ typically observed only in high quality crystal and neutral donor bound exciton $(D^{o},X)$ having very strong peak intensity The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively, The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Preparation of Ferroelectric (YbxY1-x)MnO3 Thin Film by Sol-Gel Method (졸-겔법에 의한 (YbxY1-x)MnO3강유전체 박막제조)

  • 강승구;이기호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • The ferroelectric (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ thin films were fabricated by sol-gel method using Y-acetate, Yb-acetate, and Mn-acetate as raw materials. The stable (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ precursor solution (sol) was prepared through the reflux process with acetylaceton as a catalyst and coated on Si(100) substrate by spin coating. The heat treatment temperature and, Rw ($H_2O$/alkoxide moi ratio) dependence on crystallinity of thin films were studied. The lowest temperature for obtaining YbMn $O_3$phase and the optimum heat-treatment conditions were proved as at 7$50^{\circ}C$ and 80$0^{\circ}C$, respectively. The hexagonal YbMn $O_3$with c-axis preferred orientation could be obtained at Rw=1 condition. The remanent polarization for the thin films of x=0 or 1 was about 200 nC/㎤ while, for the specimens ot 0< x< 1, were 50∼100 nC/$\textrm{cm}^2$.

Combined MRI and Relaxogram: A New Method of Fat Study (MRI와 Relaxogram을 이용한 지질 연구의 새로운 기법에 관한 연구)

  • Yongmin Chang;Yoo, Done-Sik;Kim, Tae-Hun;Kim, Yong-Joo;Kang, Duk-Sik;Robert B. Clarkson
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • Combined MRI and Relaxogram approach was introduced as a very useful tool for fat study. The phantoms simulating homogeneous mixture of fat and non-fat environments were measured with spin echo pulse sequence on a 0.15 T whole body imager. From 45 scans, the Tl values were obtained by fitting the data to continuous distribution (CONTIN) of relaxation time. This relaxogram gives broad distributions of relaxation time, which are characterized by a number of peaks with characteristic T1 values. Two distinct peaks in relaxogram were observed and identified as signals from com oil and gelatin gel. This model system can be served as simulating the distribution of fat in muscle. Also the relative ratio of two components, which is proportional to the area under the peak, is estimated and compared to nominal values. Based on the good agreement between two predictions, the values from our proposed method agreed with nominal values within $\pm$7 % error. The effects of different concentration of contrast agent and different region of interest are presented. To optimize total scan times, the minimum required data points and so further reduction in total scan times are discussed.

  • PDF