• Title/Summary/Keyword: Spin-coated film

Search Result 212, Processing Time 0.04 seconds

Dielectric and Electrical Properties of the Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ Thin Film by Sol-Gel Method. (Sol-Gel법에 의한 Pb($Zr_{0.52}Ti_{0.48}$)$O_3$박막의 유전 및 전기적 특성)

  • 정장호;류기원;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.14-16
    • /
    • 1995
  • Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ ceramic thin films were fabricated from an alkoxide-based solution by Sol-Gel method. Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ co-ramic thin films were formed by spin coating method on Pt/$SiO_2$/Si substrate at 4000[rpm] for 30 [sec]. Coated specimens were dried on the hot-plate at 400[$^{\circ}C$] for 10[min]. The coating process was repeated 6 times and then sintered at temperature between 500 ~ 800[$^{\circ}C$] for 1 hour. The ferroelectric perovskite phases precipitated under the sintering of 700[$^{\circ}C$] for 1 hour. Pb($Zr_{0.52}Ti_{0.48}$)$O_3$ thin film sintered at 700[$^{\circ}C$] for 1hour showed good dielectric constant (2133) and dielectric loss (2.2[%]) Properties. The switching voltage, switching time and leakage currents density were 3.0[V], 1.7[${\mu}$sec] , 160[pA/$\textrm{cm}^2$] repectively.

  • PDF

Effects of Physico-chemical Factors of Sol on the Degree of Preferred Orientation in $Pb(Mg, Zn)_{1/3}Nb_{2/3}O_3$ Thin Films (Sol의 물리화학적 변수들이 $Pb(Mg, Zn)_{1/3}Nb_{2/3}O_3$ 박막의 우선 배향성에 미치는 효과)

  • 조문규;장현명;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.305-312
    • /
    • 1995
  • Thin films of Pb(Mg, Zn)1/3Nb2/3O3 were fabricated by spin coating the Pb-Mg-Zn-Nb-O complex alkoxide sols on(111) Pt-coated MgO (100) planes. It was observed that the content of H2O and the rheological characteristics of sol greatly influenced the orientation of perovskite grains after thin-film formation. A strong preferential orientation of (100)-type planes of the perovskite grains was obtained for the sol aged for 15 days with the molar ratio of H2O to total metal alkoxides=2. As small angle X-ray scattering experiment in the Porod region was performed to correlate the observed preferential orientation with the network structure of precursors at various stage of aging. It was shown that the degree of branching of the Pb-Mg-Zn-Nb-O precursor chain had a direct effect on the preferred oreintation, and weakly branched precursor systems led to highly oriented grains after thin-film formation.

  • PDF

Solvent Treatment for PEDOT:PSS Conductivity Enhancement

  • Hwang, Gi-Hwan;Jeong, Won-Seok;Nam, Sang-Hun;Yu, Jeong-Hun;Ju, Dong-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.333-333
    • /
    • 2013
  • The poor conductivity of poly (3,4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) film hinders to use for a flexible electrode in solar cells. In this report we demonstrate that the conductivity of PEDOT:PSS film can be enhanced by modifying structures in a mixture of PEDOT: PSS aqueous solution and various organic solvents such as polar protic (2-propanol, methanol, ethanol, formic acid) and aprotic solvents (acetone and acetonitrile). To comparatively study the structural effects on the resulted electrical properties, the films are spin-coated on glasses and ITO. At the same time, a contact angle goniometer is used for clarifying a mechanism of wettability of PEDOT (hydrophobic) and PSS (hydrophilic) on the observed conductivity. The structures and electrical properties are investigated by FE-SEM (Field Emission Scanning Electron Microscopy), AFM (Atomic Force Microscopy), and 4-point probe, respectively.

  • PDF

Synthesis and Characterization of Perylene-based Pyrrolopyrone Derivative for Organic Thin Film Transistor

  • Kim, Hyung-Sun;Jung, Sung-Ouk;Kim, Yun-Hi;Do, Lee-Mi;Kwon, Soon-Ki
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.1-5
    • /
    • 2005
  • Perylene-based pyrrolopyrone derivative (PPD) was synthesized via condensation reaction with perylenetetracarboxylic dianhydride and 1,2-phenylenediarnine as n-type channel material. The structure of PPD was characterized by spectroscopic methods such FT-IR and $^1H$-NMR. PPD exhibited high thermal stability ($T_{d5wt%}: 560^{\circ}C$) and was found to be soluble only in protonic solvents with high acidity such as methane sulfonic acid and trifluoroacetic acid. The PPD solution showed maximum absorption and emission at 601 and 628 nm, respectively. Thin film transistors were fabricated by vacuum deposition and solution casting method. The electron mobilities of the devices were achieved as high as $0.17{\times}10^{-6}cm^2/Vs$ for vacuum deposited device and $0.4{\times}10^{-6}cm^2/Vs$ for spin coated device, respectively.

Capacitor characteristics of SBT Ferroelectric Thin Films depending on substrate conditions (기판 조건에 따른 SBT 강유전체 커패시터의 특성)

  • 박상준;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2000
  • Ferroelectric SrxBi2+yTa2O9+$\alpha$ thin films with various compositions(x=0.7, 0.8, 1, y=0.3, 0.4) were prepared by sol-gel method. The film with moled ratio of 0.8:2.3:2.0 in Sr/Bi/Ta, which was deposited on Pt/SiO2/Si (100), showed better ferroelectric properties than other films. To investigate substrate effects, the same compositions were spin coated on Pt/Ti/SiO2/Si (100) substrates. At an applied voltage of 5V, the dielectric constant($\varepsilon$r), remanent polarization (2Pr) and coercive field (Ec) of the Sr0.8Bi2.3Ta2O9+$\alpha$ thin film prepared on Pt/Ti/SiO2/Si (100) were about 296, 24$\mu$C/$\textrm{cm}^2$ and Ec of 49kV/cm respectively. Both SBT films firred at 80$0^{\circ}C$ revealed no fatigue up to 1010 cycles. Retention characteristics of these capacitors showed no degradation up to 104 sec.

  • PDF

Fabrication and Characterization of Direct-Patternable PZT Film Prepared by Photochemical Metal-Organic Deposition (광화학증착법에 의한 직접패턴 PZT 박막의 제조 및 특성)

  • Park, Hyeong-Ho;Park, Hyung-Ho;Kim, Tae-Song;Hill, Ross-H.
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • The ferroelectric properties of UV irradiated and non-irradiated PZT films prepared via photochemical metal-organic deposition using photosensitive precursors were characterized. Fourier transform infrared spectroscopy showed that complete removal of organic groups was possible through UV exposure of the spin-coated PZT precursor films at room temperature. The measured remnant polarization values of UV-irradiated and non-irradiated PZT films after annealing at $650^{\circ}C$ were 29 and $23\;{\mu}C/cm^2$, respectively. The UV irradiation was found to be effective for the enhancement of the <111> growth orientation and ferroelectric property of PZT film and in the direct patterning in the fabrication of micro-patterned systems without dry etching.

Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells (P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구)

  • Gisung Kim;Mijoung Kim;Hyojung Kim;JungYup Yang
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.103-107
    • /
    • 2023
  • A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

Quantum Confinement Effect Induced by Thermal Treatment of CdSe Adsorbed on $TiO_2$ Nanostructure

  • Lee, Jin-Wook;Im, Jeong-Hyeok;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.213-213
    • /
    • 2012
  • It has been known that quantum confinement effect of CdSe nanocrystal was observed by increasing the number of deposition cycle using successive ionic layer adsorption and reaction (SILAR) method. Here, we report on thermally-induced quantum confinement effect of CdSe at the given cycle number using spin-coating technology. A cation precursor solution containing $0.3\;M\;Cd(NO_3)_2{\cdot}4H_2O$ is spun onto a $TiO_2$ nanoparticulate film, which is followed by spinning an anion precursor solution containing $0.3\;M\;Na_2\;SeSO_3$ to complete one cycle. The cycle is repeated up to 10 cycles, where the spin-coated $TiO_2$ film at each cycle is heated at temperature ranging from $100^{\circ}C$ to $250^{\circ}C$. The CdSe-sensitized $TiO_2$ nanostructured film is contacted with polysulfide redox electrolyte to construct photoelectrochemical solar cell. Photovoltaic performance is significantly dependent on the heat-treatment temperature. Incident photon-to-current conversion efficiency (IPCE) increases with increasing temperature, where the onset of the absorption increases from 600 nm for the $100^{\circ}C$- to 700 nm for the $150^{\circ}C$- and to 800 nm for the $200^{\circ}C$- and the $250^{\circ}C$-heat treatment. This is an indicative of quantum size effect. According to Tauc plot, the band gap energy decreases from 2.09 eV to 1.93 eV and to 1.76 eV as the temperature increases from $100^{\circ}C$ to $150^{\circ}C$ and to $200^{\circ}C$ (also $250^{\circ}C$), respectively. In addition, the size of CdSe increases gradually from 4.4 nm to 12.8 nm as the temperature increases from $100^{\circ}C$ to $250^{\circ}C$. From the differential thermogravimetric analysis, the increased size in CdSe by increasing the temperature at the same deposition condition is found to be attributed to the increase in energy for crystallization with $dH=240cal/^{\circ}C$. Due to the thermally induced quantum confinement effect, the conversion efficiency is substantially improved from 0.48% to 1.8% with increasing the heat-treatment temperature from $100^{\circ}C$ to $200^{\circ}C$.

  • PDF

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF