Browse > Article

Synthesis and Characterization of Perylene-based Pyrrolopyrone Derivative for Organic Thin Film Transistor  

Kim, Hyung-Sun (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Jung, Sung-Ouk (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Kim, Yun-Hi (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Do, Lee-Mi (Basic Research Laboratory, ETRI)
Kwon, Soon-Ki (Department of Polymer Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Abstract
Perylene-based pyrrolopyrone derivative (PPD) was synthesized via condensation reaction with perylenetetracarboxylic dianhydride and 1,2-phenylenediarnine as n-type channel material. The structure of PPD was characterized by spectroscopic methods such FT-IR and $^1H$-NMR. PPD exhibited high thermal stability ($T_{d5wt%}: 560^{\circ}C$) and was found to be soluble only in protonic solvents with high acidity such as methane sulfonic acid and trifluoroacetic acid. The PPD solution showed maximum absorption and emission at 601 and 628 nm, respectively. Thin film transistors were fabricated by vacuum deposition and solution casting method. The electron mobilities of the devices were achieved as high as $0.17{\times}10^{-6}cm^2/Vs$ for vacuum deposited device and $0.4{\times}10^{-6}cm^2/Vs$ for spin coated device, respectively.
Keywords
perylenepyrrolopyrone; OTFT; mobility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H. Sakaki, Appl. Phys. Lett. 58, 1500 (1991)   DOI
2 H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, J. Am. Chem. Soc. 122, 7787 (2000)
3 D. C. Shin, Y. H. Kim, H. You, and S. K. Kwon, Macromolecules 36, 3222 (2003)
4 C. Videlot, J. Ackermann, P. Blanchard, J. M. Raimundo, P. Frère, M. Allain, R. de Bettignies, E. Levillain, and J. Roncali, Adv. Mater. 15, 306 (2003)   DOI
5 R. Wisnieff, Nature 394, 225 (1998)
6 G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues, X. Pan, and F. Garnier, Adv. Mater. 8, 242 (1996)
7 S. W. Pyo, J. H. Shin, and Y. K. Kim, J. Inform. Dis. 4, 1 (2003)
8 Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 120, 207 (1998)
9 C. D. Dimitrakopoulos, and P. Malenfant, Adv. Mater. 14, 99 (2002)
10 P. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Appl. Phys. Lett. 80, 2517 (2002)
11 S. G. Liu, G. Sui, R. A. Cormier, R. M. Leblanc, and B. A. Gregg, J. Phys. Chem. B 206, 1307 (2002)
12 C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283, 822 (1999)
13 B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, Appl. Phys. Lett, 78, 2229 (2001)   DOI   ScienceOn