• Title/Summary/Keyword: Spin on-Glass

Search Result 208, Processing Time 0.028 seconds

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Soft Magnetoresistive Properties of Conetic Thin Film Depending on Ta Buffer Layer (버퍼층 Ta에 의존하는 코네틱 박막의 연자성 자기저항 특성)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Choi, Jin-Hyub;Lee, Ky-Am;Rhee, Jang-Rho
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.197-202
    • /
    • 2009
  • The property of soft magnetism for the Corning glass/non-buffer or buffer Ta/Conetic(NiFeCuMo)/Ta prepared by the ion beam deposition sputtering was studied. The effect of crystal property and post annealing treatment depending on the thickness of Conetic thin films was investigated. The coercivities of Conetic thin films with easy and hard direction along to the applying magnetic field during deposition were compared with each other. The coercivity and magnetic susceptibility of Ta(5 nm)/Conetic(50 nm) thin film were 0.12 Oe and 1.2 ${\times}\;10^4$, respectively. From these results, firstly, the Conetic thin film was more soft magnetism thin film than other one such as permalloy NiFe. Secondly, the usage of soft magnetism Conetic thin film for GMR-SV (giant magneoresistance-spin valve) or MTJ (Megnetic Tunnel Junction) structure in a low magnetic field can be possible.

Magnetoresistance of ${[Co/Fe/Cu]}_20$ Multilayers (${[Co/Fe/Cu]}_20$ 다층박막의 자기저항 특성)

  • 이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.411-416
    • /
    • 1996
  • We have studied the effect of a spin-dependence interface electron scattering on the giant magnetoresistance by adding a Fe magnetic material to the Co/Cu interfaces. The $Fe(50\;{\AA})/[Co(17\;{\AA})/Fe(t\;{\AA})/Cu(24\;{\AA})]_{20}$ multilayers are deposited on the Corning glass 2948 and 7059 substrates in a dc magnetron sputtering system. The magnetoresistance ratio is 22 % in the only Co/Cu multilayer, while it is increased to 26 % with inserted ultra thin Fe interface layer and reduced with increasing thickness of the Fe interface layer. It was investigated to the dependence of the magnetoresistance behaviors on annealing temperature. The magnetic properties of the multilayers were measured by vibrating sample magnetometer. Also, the structures and the surface roughness of samples were characterized by X-ray diffraction and atomic force microscope, respectively. The magnetoresistance ratio was increased to annealing temperature $300^{\circ}C$, but reduced at the temperature higher than $300^{\circ}C$ due to the interfacial diffuse.

  • PDF

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

  • Shrestha, Shankar Prasad;Ghimire, Rishi;Nakarmi, Jeevan Jyoti;Kim, Young-Sung;Shrestha, Sabita;Park, Chong-Yun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.112-115
    • /
    • 2010
  • Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity ($\rho$), carrier concentration (n), and hall mobility ($\mu$) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity ($8.5 \times 10^{-2}$ ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility.

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

The electrical characteristics of pentacene field-effect transistors with polymer gate insulators

  • Kang, Gi-Wook;Kang, Hee-Young;Park, Kyung-Min;Song, Jun-Ho;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.675-678
    • /
    • 2003
  • We studied the electrical characteristics of pentacene-based organic field-effect transistors (FETs) with polymethyl methacrylate (PMMA) or poly-4-vinylphenol (PVP) as the gate insulator. PMMA or PVP was spin-coated on the indium tin oxide glass substrate that serves as gate electrodes. The source-drain current dependence on the gate voltage shows the FET characteristics of the hole accumulation type. The transistor with PVP shows a higher field-effect mobility of 0.14 $cm^{2}/Vs$ compared with 0.045 $cm^{2}/Vs$ for the transistor with PMMA. The atomic force microscope (AFM) images indicate that the grain size of the pentacene on PVP is larger than that on PMMA. X-ray diffraction (XRD) patterns for the pentacene deposited on PVP exhibit a new Bragg reflection at $19.5{\pm}0.2^{\circ}$, which is absent for the pentacene on PMMA. This peak corresponds to the flat-lying pentacene molecules with less intermolecular spacing.

  • PDF

Preparation and characteristics of $Pb_{x}Ti_{1-x}$$O_2$(x = 0.1) Thin Film ($Pb_{x}Ti_{1-x}$$O_2$(x = 0.1) 박막의 제조 및 특성)

  • 김상수;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.418-424
    • /
    • 2000
  • Pure $TiO_2$and 10 mol % Pb-doped $TiO_2(Pb_xTi_{1-x}O_2$(x = 0.1)) powder and thin films have been prepared by the sol-gel method. Titanium isopropoxide and ethanol are used for pure $TiO_2$, lead acetate trihydrate and titanium triisopropoxide monoacethylacetonate are used for Pb-doped $TiO_2$, respectively. Films are coated on p-type Si(100) wafer and ITO glass substrates by the sol-gel spin-coating method. The powder and multi-coated films are annealed at different temperature (400~$800^{\circ}C$) for phase formation and crystallization. TGA/DTA, XRD analysis, SEM and UV-visible transmission spectroscopy have been used to study the characteristics of the powder and films. XRD results show that the films are polycrystalline, anatase type and oriented predominantly to the A(101) plane. A slight shift in the d-spacing for the Pb-doped film indicates the incorporation of the Pb into $TiO_2$lattice. A shift of the absorption wavelength in the transmission spectrum towards longer wavelength has been observed about $Pb_xT_{1-x}O_2$(x = 0.1) thin film, which indicates a decrease in the bandgap of $TiO_2$upon Pb-doping.

  • PDF

Eu-doped LGF Luminescent Down Converter Possible for TiO2 Dye Sensitized Solar Cells

  • Kim, Hyun-Ju;Song, Jae-Sung;Lee, Dong-Yun;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.89-92
    • /
    • 2004
  • For improving solar efficiencies, down conversion of high-energy photons to visible lights is discussed. The losses due to thermalization of charge carriers generated by the absorption of high-energy photons, can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. The solar cell was constructed of dye-sensitized anatase-based TiO$_2$, approximately 30nm particle size, 6$\mu\textrm{m}$thickness, and 6${\times}$6$\textrm{mm}^2$ active area, Pt counter electrode and I$_3$$\^$-/I$_2$$\^$-/ electrolyte. After correction for losses due to light reflection and absorption by the conducting glass, the conversion of photons to electric current is practically quantitative in the plateau region of the curves. The incident photon to current conversion efficiency(IPCE) of N3 used as a dye in this work is about 80% at around 590nm and 610nm which is the emission spectrum of Eu doped LGF. The Eu doped LGF powder was prepared by conventional ceramic process, and used as a down converter for DSC after spin coated on the slide glass and fired.