• Title/Summary/Keyword: Spin effect

Search Result 745, Processing Time 0.042 seconds

A Study on the Effect of Neighboring Protons in Proton-Coupled Spin-Lattice Relaxation of Methylene Carbon-13 in n-Undecane

  • Kim, Chul;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.727-735
    • /
    • 2002
  • Proton coupled carbon-13 relaxation experiment was performed to investigate the effect of vicinal protons on spin-lattice relaxation of methylene carbon-13 in n-undecane. A BIRD type pulse sequence was employed as a way to check the validity of describing the 13CH2 moiety as an isolated AX2 spin system. The results show that the presence of vicinal protons exerts substantial influence on the relaxation of methylene carbon-13, indicating that it is not a very good approximation to treat a methylene moiety as an isolated AX2 spin system.

Effect of the Perpendicular Magnetic Field and Nonadiabatic Spin-transfer Torque on the Vortex Dynamics

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.157-159
    • /
    • 2008
  • The effect of the perpendicular field on the trajectory of a vortex core driven by spin-transfer torque was investigated using micromagnetic simulations. The trajectory of the vortex core was staggered due to distortions of the moving vortex core. The core trajectory was affected by both the perpendicular field and ${\beta}$ value, which is the relative magnitude of nonadiabatic spin torque to the adiabatic spin torque. This suggests that the effect of the perpendicular field should be considered when examining a vortex core trajectory affected by ${\beta}$.

Switching behavior in Peramlloy/Niobium/Permalloy trilayer

  • Hwang, Tae-Jong;Kim, Dong Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.17-20
    • /
    • 2014
  • We have investigated the effect of temperature and bias current on the stability of the inverse spin-switch effect in Permalloy(Py)/Nb/Permalloy pseudo spin-valves. The inverse spin-switch operates between two orientations of the ferromagnetic moments of Py layers; parallel (ON) and antiparallel-domain (OFF) state. Measuring time scans of the resistance changes between the ON and OFF state, ${\Delta}R_{ON-OFF}$, while alternating magnetic fields between the two states at various temperatures and bias currents, revealed that enhancement of ${\Delta}R_{ON-OFF}$ is a key factor to achieve successful operation of superconducting spin switch.

Study of Structure Change by Temperature Effect in Spin Label of Myosin Head (Myosin Head의 Spin Label이 온도 영향에 따른 구조 변화 연구)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.268-273
    • /
    • 2003
  • IASL(iodo acetamide spin label) and MSL(maleimide spin label) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. The muscle was isometrically tetanized with three trains of 3ms pulses every 50ms between $5^{\circ}C$ with $25^{\circ}C$. Equatorial reflection change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of $143{\AA}$ and $72{\AA}$ could offer information of the mass projection of population of myosin head along the filament axis. The slope of intensity profile of the mass projection of $143{\AA}$ and reflection of IASL is appeared and that of MSL is appeared sharply. The decrease of $215{\AA}$ reflection intensity the periodical character of $143{\AA}$ reflection by spin label. The raise of MSL actin reflection at $51{\AA}$ and $59{\AA}$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we can conclude that IASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.

A Study on the X-ray Diffraction of Rabbit Glycerin Muscle by Spin Labeled on SH (SH에 Spin Label한 Rabbit Glycerin처리근육의 X선 회절에 관한 연구)

  • 김덕술;송주영
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.681-686
    • /
    • 1998
  • IASL(iodo acetamide) and MSL(maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. Equatorial reflection(10,11) change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of 143 $\AA$ and 72 $\AA$ could offer infor-mation of the mass projection of population of myosin heads along the filament axis. The slope of intensity profile of the mass projection of 143 $\AA$ and reflection of IASL is appeared and that of MSL is appeared sharply. The dec-rease of 215 $\AA$ reflection intensity the periodical characteristic of 143 $\AA$ reflection by spin label. The raise of MSL actin reflection at 51 $\AA$ and 59 $\AA$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we could conclude that LASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.

  • PDF

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF