• Title/Summary/Keyword: Spin distribution

Search Result 114, Processing Time 0.021 seconds

Conformational Analysis of Cyclodextrins and Their Methylated Analogs (시클로 덱스티린과 그 메틸유도체의 구조분석)

  • Hee-Sook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.324-328
    • /
    • 1992
  • The $^1H$ NMR chemical shifts and coupling constants for ${\alpha}$-, permethyl-${\alpha}$-, ${\beta}$-and permethyl-${\beta}$-cyclodextrins in neutral aqueous media were assigned based on the 470MHz spectra. In order to obtain accurate chemical shifts and coupling constants the experimental spectra were analyzed with the Raccoon spin simulation program. The rotamer distribution around the$C_{5-}C_6$ bond of the cyclodextrins evaluated from the coupling constants of $J_{56a}$ and $J_{56b}$. In our calculation of the ${\alpha}$-, and ${\beta}$-cycliodextrin showed that gg conformers were most favorable form and tg conformers were least favorable form. It is very interesting to note the changes in $J_{56a}$, $J_{56b}$ coupling constants of permethylated ${\alpha}$- and ${\beta}$-cyclodextrins from unmodified one. The gg conformers were more increased than unmodified one and instead of tg conformers gt conformers were least favorable one upon methylation.

  • PDF

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.382-388
    • /
    • 2004
  • The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus;Abdur, Rahim;Singh, Son;Kim, Jae-Hun;Min, Kyeong-Sik;Kim, Jiyoung;Lee, Jaegab
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.700-711
    • /
    • 2018
  • CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.

Line-profile Formula in the Carbon Nanotubes by Electron Spin Resonance

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The line-width of carbon nanotubes (CNTs) was studied as a function of the temperature at a frequency of 9.49 GHz in the presence of external electromagnetic radiation. The relative frequency dependence of the absorption power is obtained with the projection operator technique (POT) proposed by Kawabata. The line-width increased as the temperature increased in the high-temperature region (T>200 K). The scattering is little affected in the low-temperature region (T<200 K) because there is no correlation between the resonance field and the Fermi-Dirac distribution function. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition problems.

Structural and Magnetic Properties of Dilute Spinel Ferrites: Neutron Diffractometry and Magnetometry Investigations

  • Mamiya, H.;Terada, N.;Kitazawa, H.;Hoshikawa, A.;Ishigaki, T.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • Magnetic properties of highly zinc-substituted manganese ferrites are discussed on the basis of cation distribution. High throughput neutron powder diffractometry indicates that the prepared samples possess a nearly normal spinel structure, where the substitution of nonmagnetic zinc ions mainly causes the dilution of magnetic ions in the A-sublattice and consequently affects bond-randomness in the B-sublattice. On the other hand, the estimated occupancy of manganese ions in the B site indicates that random anisotropy effects due to local Jahn-Teller distortions gradually weaken with the substitution. Bulk magnetometry indicates that the substitution smears the transition from a paramagnetic phase to a soft-magnetic phase. Furthermore, at lower temperatures, such a soft-magnetic phase is destabilized and a magnetic glassy state appears. These features of the magnetic properties of dilute spinel ferrites are discussed from the viewpoint of the above-mentioned various types of disorders.

Electronic Structure and Magnetism of CrP/SrBi Interface: A First Principles Study

  • Bialek, Beata;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.93-96
    • /
    • 2007
  • We investigated the electronic structure and magnetic properties of zinc-blende CrP/SrBi interface by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the half-metallicity is destroyed when the two half-metals are in contact. Magnetic moments of the atoms forming the supercell differ considerably from the respective values obtained for the bulk structures of the two materials. Cr atoms being and not being in contact with Bi atoms have magnetic moment 3.43 and $2.69{\mu}_B$, respectively. Bi atoms lose their majority electrons which results in their negative polarization. Alkaline Sr atoms are very weakly negatively polarized. The spin distribution within the supercell is such that well separated regions of positive and negative polarization are seen, especially around the layer of P atoms being in contact with the layer of Sr atoms.

Magnetic Coupling in Oxoverdazyl-Benzene-Oxoverdazyl Diradical Systems: A DFT Study

  • Park, Young Geun;Ko, Kyoung Chul
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.25-35
    • /
    • 2013
  • The intramolecular magnetic coupling constant (J) values of diradical-based magnet models (S1-S5) were studied using unrestricted density functional theory. The model systems were designed with series of oxoverdazyl radicals (o-Ver(N) and o-Ver(C)) linked through a benzene coupler. They were divided according to either connectivity of the radical (C or N) or geometrical topology (meta- and para-) of benzene coupler. Reasonable relationship was found between spin density distribution and sign of J value. With our results we determined ferromagnetic (positive J value) and antiferromagnetic (negative J value) interactions. J values were also calculated along the twisting movement by the scan of dihedral angles between the radical and the coupler. An overall trend was found as absolute value of J decreased over increasing torsion angles.

  • PDF

PSF Deconvolution on the Integral Field Unit Spectroscopy Data

  • Chung, Haeun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.4-58.4
    • /
    • 2019
  • We present the application of the Point Spread Function (PSF) deconvolution method to the astronomical Integral Field Unit (IFU) Spectroscopy data focus on the restoration of the galaxy kinematics. We apply the Lucy-Richardson deconvolution algorithm to the 2D image at each wavelength slice. We make a set of mock IFU data which resemble the IFU observation to the model galaxies with a diverse combination of surface brightness profile, S/N, line-of-sight geometry and Line-Of-Sight Velocity Distribution (LOSVD). Using the mock IFU data, we demonstrate that the algorithm can effectively recover the stellar kinematics of the galaxy. We also show that lambda_R_e, the proxy of the spin parameter can be correctly measured from the deconvolved IFU data. Implementation of the algorithm to the actual SDSS-IV MaNGA IFU survey data exhibits the noticeable difference on the 2D LOSVD, geometry, lambda_R_e. The algorithm can be applied to any other regular-grid IFS data to extract the PSF-deconvolved spatial information.

  • PDF