• Title/Summary/Keyword: Spherically convergent beam fusion

Search Result 8, Processing Time 0.022 seconds

A Study on Discharge Phenomenon of Spherically Convergent Beam Fusion Device for Neutron Generation (중성자 발생용 구형 집속빔 핵융합 장치의 방전현상 연구)

  • Park, Jeong-Ho;Ju, Heung-Jin;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.467-470
    • /
    • 2007
  • Application field of neutron beam is very broad including industry, medicine and science. But the research and development and use of neutron beam is restricted within in narrow limits in this country, because neutron beam facility is insufficient - a big research facility of nuclear reactor(HANARO) and some small industrial facilities which use radioisotope neutron source are available. This paper compare and investigate the results of experiment and numerical analysis of the discharge in the spherically convergent beam fusion device which were expected as a portable neutron source. The spherically convergent beam fusion device will offer stability in neutron production, possibility of movement for convenience, low construction cost and higher neutron flux than radioisotope neutron source. The star mode discharge which efficiently generate neutron, were observed at both results.

A Study on Discharge Characteristics of Spherically Convergent Beam Fusion Device (구형 집속 빔 핵융합 장치의 방전특성 연구)

  • Park, Jeong-Ho;Ju, Heung-Jin;Kim, Bong-Seok;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1823-1825
    • /
    • 2004
  • Spherically convergent beam fusion device accelerate ions, which are generated between outer anode and inner grid cathode, toward the spherical center. The collision of opposite direction ions give rise to fusion reactions. Spherically convergent beam fusion device is very simple and compact, therefore the device has a potential that is applied to a portable neutron source. An experimental device consist of a 20cm-diameter spherical mesh-type anode and 7cm-diameter open spherical grid cathode and was maintained at a constant pressure of about 1333 Pa by feeding argon gas.

  • PDF

Optimal Design of Grid Cathode Structure in Spherically Convergent Beam Fusion Device (구형 집속 빔 핵융합 장치에서 그리드 음극 구조의 최적 설계)

  • Ju, Heung-Jin;Park, Jeong-Ho;Hwang, Hwui-Dong;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 2008
  • Neutron production rate in spherically convergent beam fusion(SCBF) device as a portable neutron source strongly depends on the ion current and the grid cathode structure. In this paper, as the process of design and analysis, Design of Experiment(DOE) based on the results by Finite Element Method-Flux Corrected Transport(FEM-FCT) method is employed to calculate the ion current. This method is very useful to find optimal design conditions in a short time. Number of rings, radius of rings, and distance between the grid cathode and center are selected as control factors. From the results in the optimized model, the higher ion current is calculated and deeper potential well is also observed.

Electronic and Optical Measurement of Discharge in Spherically Convergent Beam Fusion Device (구형 집속빔 핵융합 장치 방전의 전자적 광학적 측정)

  • Park, Jeong-Ho;Ju, Heung-Jin;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2160-2162
    • /
    • 2005
  • 중성자 발생을 위한 구형 집속빔 핵융합 장치 방전의 실험적 결과들이 제시되었다. 실험 장치는 직경 22cm, 높이 20cm의 진공용기 안에 동심원적으로 위치한 구형 양극과 grid 음극으로 구성된다. 진공용기에 아르곤 기체를 주입하고, grid 음극에 펄스 전압을 인가하여 방전을 발생시켰다. 다양한 grid 음극에 대한 방전의 실험적 결과들이 전자적, 광학적으로 측정되었다.

  • PDF

Numerical simulation for increment of neutron production rate in SCBF device (SCBF 장치에서 중성자 생성률 증대를 위한 수치해석)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2184-2186
    • /
    • 2005
  • Neutron production is very important to apply fusion energy through SCBF(Spherically Convergent Beam Fusion) device and its rate is Proportional to the square of the ion current$({\propto}I^2)$. Also the ion current has a close relation with the potential well structure in grid cathode. In this paper, the ion current is calculated for the increasement of neutron production rate in a variety of grid cathode geometry. The atomic and molecular collision are taken into account by Monte Carlo Method and Potential is calculated by Finite Element Method. Main processes of the discharge is the ionization of $D_2$ by fast $D_2^+$ ion. As the number of a cathode ring is small and gap distance decreases, the ion current increases and neutron production rate will increase.

  • PDF

Effect of Potential Well Structure on Ion Current in SCBF Device (SCBF 장치에서 이온전류에 대한 포텐셜 우물 구조의 영향)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.471-477
    • /
    • 2007
  • SCBF(Spherically Convergent Beam Fusion) device has been studied as a neutron source. Neutron production rate is a most important factor for the application of SCBF device and is proportional to the square of the ion current[1]. It is regarded generally that some correlations between the potential well structure and the ion current exist. In this paper, the ion current and potential distribution were calculated in a variety of grid cathode geometries using FEM-FCT method. Single potential well structure was certified inside the grid cathode. The deeper the potential well became, the higher the ion current due to the high electric field near the grid cathode became.

Optimal Design for the Increment of Ion Current in Spherically Convergent Beam Fusion Device (이온전류 증대를 위한 구형 집속 빔 핵융합 장치의 최적 설계)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hui-Dong;Park, Jeong-Ho;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1366-1367
    • /
    • 2008
  • 구형 집속 빔 핵융합 장치에서 발생되는 중성자 생성률은 이온전류의 크기에 크게 의존한다. 본 논문에서는 이온전류의 크기를 증가시키기 위해 구조 설계에 주로 이용되는 다구찌 실험계획법을 이용하여 최적의 설계 조건을 계산하였다. 최적화를 위해 그리드 음극 형상의 결정인자 및 압력을 설계 변수로 선택하였고, 설계변수가 이온전류의 크기에 미치는 영향력을 분석하여 최적의 조건을 도출하였으며, 예측된 최적 조건 변수값을 적용하여 효과를 검증하였다. 최적 모델로부터 더 큰 이온전류를 얻을 수 있었으며, 이는 더 깊은 포텐셜 우물에서 측정되었다.

  • PDF

Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device (SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.