• 제목/요약/키워드: Spherical sensor

검색결과 74건 처리시간 0.023초

고감도 압저항 외팔보 센서를 이용한 Liposome의 검침 (Rapid detection of liposome by piezoresistive cantilever sensor)

  • 현석정;김현석;김용준;정효일
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.156-159
    • /
    • 2005
  • Liposomes are microscopic spherical vesicles that form when lipids are hydrated and have been widely used for biochemical assay, drug delivery and molecular imaging. In particular, they are well known for artificial cell membranes to study cellular functions such as cell fusions and membrane proteins. Here, we firstly report the detection of liposomes by the highly sensitive microfabricated piezoresistive cantilever sensor chip and the phosphatidylserine recognition protein C2A which is chemically immobilized on the sensor surface. The signal created from the bending motion of piezoresistive cantilever after the liposome attachment has been monitored in real time.

Fluid film measurements on the spherical valve plate in oil hydraulic axial piston pumps

  • Kim, J.K.;Jung, J.Y.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.381-382
    • /
    • 2002
  • The Fluid film between the valve plate and the cylinder block was measured by use of a gap sensor and the mercury-cell slip ring unit under real working conditions. During the operating periods, experiments with discharge pressure, revolution speed, and valve geometry was carried out for the fluid film on the valve plate. To investigate the effect of the valve shape, we designed two valve plates each having a different shape; the first valve plate was a plane valve plate. while the second valve plate was a spherical valve plate. It was noted that these two valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rate and the shan torque were also investigated in order to clarify the difference between these two types of valve plates. From the results of this study. we found that the spherical valve plate estimated good fluid film patterns and performance more than the other valve plate in oil hydraulic axial piston pumps.

  • PDF

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

음향 신호를 이용한 수중로봇의 위치추정 (Localization of an Underwater Robot Using Acoustic Signal)

  • 김태균;고낙용
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

결합형 유한요소-경계요소 기법을 사용한 구형체의 음향 산란 해석 (Acoustic Scattering Analysis of a Spherical Shell using a coupled FE-BE Method)

  • 장순석
    • 센서학회지
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 1998
  • 본 논문에서는 구형의 수중 구조체에 평면 음향파가 입사될 경우에 발생하는 산란파 음압의 크기와 방향성이 3차원적으로 어떻게 분포되는 지 살펴보고 자 한다. 이를 위한 수치해석적 방법으로 결합형 유한요소-경계요소(FE-BE) 기법을 개발하였다. 이 같은 구형 모델의 수치해석적 결과를 기존의 이론적 해답과 비교하여 본 연구에서 개발한 결합형 FE-BE 기법의 타당성을 검증하였다.

  • PDF

구형 Sn 표면의 SnO2 나노와이어 네트워크: 합성과 NO2 감지 특성 (SnO2 Nanowire Networks on a Spherical Sn Surface: Synthesis and NO2 sensing properties)

  • 팜티엔헝;조현일;슈엔하이엔뷔엔;이상욱;이준형;김정주;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.142.2-142.2
    • /
    • 2018
  • One-dimensional metal oxide nanostructures have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. In which, semiconducting $SnO_2$ material with wide-bandgap Eg = 3.6 eV at room temperature, is one of the attractive candidates for optoelectronic devices operating at room temperature [1, 2], gas sensor [3, 4], and transparent conducting electrodes [5]. The synthesis and gas sensing properties of semiconducting $SnO_2$ nanomaterials have become one of important research issues since the first synthesis of SnO2 nanowires. In this study, $SnO_2$ nanowire networks were synthesized on a basis of a two-step process. In step 1, Sn spheres (30-800 nm in diameter) embedded in $SiO_2$ on a Si substrate was synthesized by a chemical vapor deposition method at $700^{\circ}C$. In step 2, using the source of these Sn spheres, $SnO_2$ nanowire (20-40 nm in diameter; $1-10{\mu}m$ in length) networks on a spherical Sn surface were synthesized by a thermal oxidation method at $800^{\circ}C$. The Au layers were pre-deposited on the surface of Sn spherical and subsequently oxidized Sn surface of Sn spherical formed SnO2 nanowires networks. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that $SnO_2$ nanowires are single crystalline. In addition, the $SnO_2$ nanowire is also a tetragonal rutile, with the preferred growth directions along [100] and a lattice spacing of 0.237 nm. Subsequently, the $NO_2$ sensing properties of the $SnO_2$ network nanowires sensor at an operating temperature of $50-250^{\circ}C$ were examined, and showed a reversible response to $NO_2$ at various $NO_2$ concentrations. Finally, details of the growth mechanism and formation of Sn spheres and $SnO_2$ nanowire networks are also discussed.

  • PDF

적외선 체열촬영시스템을 위한 고속 광주사기의 구현 (Realization of a High Speed Optic Scanner for Infrared Thermal Imaging)

  • 이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 1995
  • A high speed optic scanner capable of 16 frames/sec imaging has been developed for the realization of the infrared thermal Imaging system with a single element infrared sensor. The high speed optic scanner is composed of a rotating polygon mirror for horizontal scanning, a flat mirror mounted on a galvanometer for vertical scanning, and a spherical mirror. It has been experimentally found that the optic scanner is capable of 16 framesllsec imaging with the frame matrix size of 256 x 64.

  • PDF

근적외선 센서를 위한 Ag2Se 나노 입자 합성 및 광전기적 특성 (Synthesis and Optoelectronic Characteristics of Ag2Se Nanoparticle for NIR Sensor Application)

  • 장재원
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.266-269
    • /
    • 2019
  • In this study, $Ag_2Se$ nanoparticles were synthesized by employing the colloidal method. The synthesized $Ag_2Se$ nanocrystals were spherical in shape with a diameter of approximately 4 nm and had high crystallinity. These attributes of $Ag_2Se$ nanocrystals were determined through images obtained from a high resolution transmission electron microscope. Thin films comprising the synthesized $Ag_2Se$ nanoparticles had an optical band gap of 1.5 eV. Furthermore, fabricated NIR sensors comprising $Ag_2Se$ nanoparticles exhibited a high detectivity of $5.5{\times}10^9$ Jones (above $1{\times}10^9$) at room temperature, leading to low power consumption

수소 센서용 Pd 첨가한 WO3 박막의 특성 (Characteristics of Pd-doped WO3 thin film for hydrogen gas sensor)

  • 김광호;최광표;권용;박진성
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.120-126
    • /
    • 2006
  • Physicochemical and electrical properties for hydrogen gas sensors based on Pd-deposited $WO_3$ thin films were investigated as a function of Pd thickness, annealing temperature, and operating temperature. $WO_3$ thin films were deposited on an insulating material by thermal evaporator. XRD, FE-SEM, AFM, and XPS were used to evaluate the crystal structure, microstructure, surface roughness, and chemical property, respectively. The deposited films were grown $WO_3$ polycrystalline with rhombohedral structure after annealing at $500^{\circ}C$. The addition effect of Pd is not the crystallinity but the suppression of grain growth of $WO_3$. Pd was scattered an isolated small spherical grain on $WO_3$ thin film after annealing at $500^{\circ}C$ and it was agglomerated as an irregular large grain or diffused into $WO_3$ after annealing at $600^{\circ}C$. 2 nm Pd-deposited $WO_3$ thin films operated at $250^{\circ}C$ showed good response and recovery property.

Investigation of Performance Degradation of Shack Hartmann Wavefront Sensing Due to Pupil Irradiance Profile

  • Lee Jun-Ho;Lee Yaung-Cheol;Kang Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2006
  • Wavefront sensing using a Shack-Hartmann sensor has been widely used for estimating wavefront errors or distortions. The sensor combines the local slopes, which are estimated from the centroids of each lenslet image, to give the overall wavefront reconstruction. It was previously shown that the pupil-plane irradiance profile effects the centroid estimation. Furthermore, a previous study reported that the reconstructed wavefront from a planar wavefront with a Gaussian pupil irradiance profile contains large focus and spherical aberration terms when there is a focus error. However, it has not been reported yet how seriously the pupil irradiance profiles, which can occur in practical applications, effect the sensing errors. This paper considered two cases when the irradiance profiles are not uniform: 1) when the light source is Gaussian and 2) when there is a partial interference due to a double reflection by a beam splitting element. The images formed by a Shack-Hartmann sensor were simulated through fast Fourier transform and were then supposed to be detected by a noiseless CCD camera. The simulations found that sensing errors, due to the Gaussian irradiance profile and the partial interference, were found to be smaller than RMS ${\lambda}/50$ when ${\lambda}$ is $0.6328\;{\mu}m$, which can be ignored in most practical cases where the reference and test beams have the same irradiance profiles.