• 제목/요약/키워드: Spherical particle sampling

검색결과 13건 처리시간 0.026초

A PROPOSAL ON ALTERNATIVE SAMPLING-BASED MODELING METHOD OF SPHERICAL PARTICLES IN STOCHASTIC MEDIA FOR MONTE CARLO SIMULATION

  • KIM, SONG HYUN;LEE, JAE YONG;KIM, DO HYUN;KIM, JONG KYUNG;NOH, JAE MAN
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.546-558
    • /
    • 2015
  • Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media.

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(I) - 화염온도의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (I) - Effects of Flame Temperature -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1139-1150
    • /
    • 1999
  • The evolution of silica aggregate particles in coflow diffusion flames has been studied experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Of particular interests are the effects of flame temperature on the evolution of silica aggregate particles. As the flow rate of $H_2$ increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of $H_2$ flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. The variation of primary particle size along the upward jet centerline and the effect of burner configuration have also been studied.

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

단분산 입자와 다분산 입자를 이용한 싸이클론 및 임팩터의 성능평가 (Performace of a Cyclone and an impactor Using Monodisperse and Polydisperse Particles)

  • Im Gyeong-Su;Lee Gyu-Won
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2001년도 추계학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2001
  • Monodisperse aerosols containing spherical particles of known size, shape and density are the most widely used to calibrate particle-size measuring instruments and to determine the effects of particle size on the sampling device. However, these tests are time-consuming because monodisperse aerosols with different particle sizes are generated and tested in a series of experiments. Polydisperse aerosols may be used to determine the calibration or to simulate equipment under controlled laboratory condition. (omitted)

  • PDF

입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구 (Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어 (Control of Size and Morphology of Particles Using CO2 Laser in a Flame)

  • 이동근;이선재;최만수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Comparison of Real Time Nanoparticle Monitoring Instruments in the Workplaces

  • Ham, Seunghon;Lee, Naroo;Eom, Igchun;Lee, Byoungcheun;Tsai, Perng-Jy;Lee, Kiyoung;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • 제7권4호
    • /
    • pp.381-388
    • /
    • 2016
  • Background: Relationships among portable scanning mobility particle sizer (P-SMPS), condensation particle counter (CPC), and surface area monitor (SAM), which are different metric measurement devices, were investigated, and two widely used research grade (RG)-SMPSs were compared to harmonize the measurement protocols. Methods: Pearson correlation analysis was performed to compare the relation between P-SMPS, CPC, and SAM and two common RG-SMPS. Results: For laboratory and engineered nanoparticle (ENP) workplaces, correlation among devices showed good relationships. Correlation among devices was fair in unintended nanoparticle (UNP)-emitting workplaces. This is partly explained by the fact that shape of particles was not spherical, although calibration of sampling instruments was performed using spherical particles and the concentration was very high at the UNP workplaces to allow them to aggregate more easily. Chain-like particles were found by scanning electron microscope in UNP workplaces. The CPC or SAM could be used as an alternative instrument instead of SMPS at the ENP-handling workplaces. At the UNP workplaces, where concentration is high, real-time instruments should be used with caution. There are significant differences between the two SMPSs tested. TSI SMPS showed about 20% higher concentration than the Grimm SMPS in all workplaces. Conclusions: For nanoparticle measurement, CPC and SAM might be useful to find source of emission at laboratory and ENP workplaces instead of P-SMPS in the first stage. An SMPS is required to measure with high accuracy. Caution is necessary when comparing data from different nanoparticle measurement devices and RG-SMPSs.

반도체 작업환경 내 부산물로 생성되는 실리카 입자의 크기, 형상 및 결정 구조 (Size, Shape, and Crystal Structure of Silica Particles Generated as By-products in the Semiconductor Workplace)

  • 최광민;여진희;정명구;김관식;조수헌
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.36-44
    • /
    • 2015
  • Objectives: This study aimed to elucidate the physicochemical properties of silica powder and airborne particles as by-products generated from fabrication processes to reduce unknown risk factors in the semiconductor manufacturing work environment. Materials and Methods: Sampling was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. Thirty-two powder and airborne by-product samples, diffusion(10), chemical vapor deposition(10), chemical mechanical polishing(5), clean(5), etch process(2), were collected from inner chamber parts from process and 1st scrubber equipment during maintenance and process operation. The chemical composition, size, shape, and crystal structure of silica by-product particles were determined by using scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy, and x-ray diffractometry. Results: All powder and airborne particle samples were composed of oxygen(O) and silicon(Si), which means silica particle. The by-product particles were nearly spherical $SiO_2$ and the particle size ranged 25 nm to $50{\mu}m$, and most of the particles were usually agglomerated within a particle size range from approximately 25 nm to 500 nm. In addition, the crystal structure of the silica powder particles was found to be an amorphous silica. Conclusions: The silica by-product particles generated from the semiconductor manufacturing processes are amorphous $SiO_2$, which is considered a less toxic form. These results should provide useful information for alternative strategies to improve the work environment and workers' health.

부산 북항 주변지역에서 포집된 PM2.5의 개별입자 특성 (Characteristics of Individual Particles for PM2.5 Collected around Busan North Port)

  • 현상민;천성우;김원년;강나연;박정호
    • 한국환경과학회지
    • /
    • 제31권9호
    • /
    • pp.781-791
    • /
    • 2022
  • In order to investigate the characteristics of the effects of various emission sources such as ships around the Busan North Port area, PM2.5 samples were analyzed by SEM/EDS (scanning electron microscopy with energy dispersive x-ray spectrometer). In the port city Busan, the main emission source of PM2.5 is ships, and soot was observed as the main exhaust particles of a ship diesel engine. As a result of the individual particle analysis of PM2.5 at the sampling site, carbonaceous particles such as soot and water droplet-shaped, which are considered to be exhausted from ships, were constantly observed. And some spherical Fe-rich particles also appeared.

요업 원료로 재활용하기 위한 석탄회의 처리 : II. 채취조건 및 수비선별시 pH의 영향 (The treatment of coal fly ash for recycling as ceramic raw materials : II. The effects of sampling condition and pH treatment in elutriation)

  • 허화범;정철원;박종현;신건철
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.627-639
    • /
    • 1996
  • 분기별 안산 및 보령 석탄회에 대한 특성변화를 조사하였고 안산 석탄회에 대한 수비 선별시 산처리의 영향을 고찰하고자 하였다. 분기별 안산 및 보령 석탄회의 주결정상은 mullite와 quartz였고, 주성분은 $Al_{2}O_{3}$$SiO_{2}$로서 발전소 및 채취시기에 따른 큰 변화가 없었다. 반면, 입도분포는 수 $\mu\textrm{m}$에서 백 $\mu\textrm{m}$ 이상의 넓은 입도분포를 갖으며 morphology는 안산 석탄회의 경우에 큰 변화가 있었다. 따라서 석탄회는 점토의 대체원료로 사용가능하나 원ㄹ의 안정적 수급을 위해서는 반드시 선별화가 선탱되어야 한다. 안산 석탄회의 수비처리시 pH를 조절함으로서 분산성이 향상되었기 때문에 4단계에서 대부분 cenosphere를 얻을 수 있었고 입도분포도 감소하였다. 또한 4단계에서 포집된 시료의 비표면적은 비처리 석탁회보다 크게 감소한 $1.24\;m^{2}/g$이었다.

  • PDF