• Title/Summary/Keyword: Spherical Wave Analysis

Search Result 34, Processing Time 0.032 seconds

Electromagnetic Interactions between Handset Antennas and Human Head: Anatomical Head vs. Multi-layered Spherical Head (휴대폰 안테나와 사용자 머리와의 전자기 상호작용: 해부학적 머리와 다층구형 머리 결과비교)

  • 김강욱
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.319-324
    • /
    • 2001
  • An anatomical head and a multi-layered spherical head with a half-wave handset antenna have been analysed and compared using the Finite-Difference Time-Domain (FDTD) and the Eigenfuntion Expansion Method (EEM), respectively. The analysis shows that results from a simple spherical head with a half-wave antenna can be used to predict the main antenna radiation patters as well as estimates of the peak SAR in a handset user's head. Various representative design data are presented using a six-layered spherical head with a half-wave antenna at 900 MHz

  • PDF

A Study on the Characteristics of Excess Attenuation of the Sound due to the Ground (지표면에 의한 음의 초과 감쇠 특성 연구)

  • 황철호;정성수
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.401-409
    • /
    • 1997
  • This study observed the meterological influence on the excess attenuation with various flow resistivities. The flow resistivity is simulated up to 30, 000 cgs rayls. There is no significant differences among results from spherical wave analysis for excess attenuation, from plane wave analysis, and from locally reacting analysis. This is validated only when the flow resistivity is more than 100 cgs rayls. For the determination of effective flow resistivity of ground by measuring the excess attenuation experimentally, it is highly recommended that the distance between source and receiver is about 2.5m, and that the height of them is 0.3-0.4 m in case that they have the same height. Under this proposed conditions, the flow resistivity of 6-month-passed asphalt ground is estimated to 5, 000 cgs rayls by comparing the measured excess attenuation with the calculated.

  • PDF

Plane Wave Scattering Induced Resonant Modes of Spherical Resonator (구형태 공진기에서의 평면파 산란 공진모드)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1260-1263
    • /
    • 2013
  • Plane wave scattering from a spherical resonator is calculated by solving the combined field integral equation (CFIE) with Rao-Wilton-Glisson (RWG) basis functions and the moment method. The calculations show that magnetic and electric dipoles are found at resonant modes. These characteristics are confirmed by radiation patterns in the far field region. In addition, an analysis of a magnetodielectric sphere is discussed.

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

Acoustic Target Strength Analysis for Underwater Vehicles Covering Near Field Spherical Wave Source Originated Multiple Bounce Effects (근접장 구면파 소스의 다중 반사 효과를 고려한 수중함의 음향표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.196-209
    • /
    • 2010
  • For the analysis of Acoustic Target Strength(TS) that indicates the scattered acoustic intensity from the underwater vehicles, an analysis program that is applicable to scatterers insonified by spherical wave source in near field is developed. In this program, the Physical Optics(PO) method is embedded as a base component. To increase the accuracy of the program, multiple bounce effects based on Geometrical Optics(GO) method are applied. To implement multiple bounce effects, GO method is used together with PO method. In detail, GO method has a concern in the evaluation of the effective area, and PO method is involved in the calculation of Acoustic Target Strength for the final effective area that is evaluated by GO method. For the embodiment of near field spherical wave source originated multiple bounce effects, image source concept is implemented additively to the existing multiple bounce algorithm which assumes plane wave insonification. Various types of models are tested to evaluate the reliability of the developed program and finally, a submarine is analyzed as an arbitrary scatterer.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

The Scattering Analysis for the Sphere in Water (수중에서 구형 산란체에 의한 음의 산란 해석)

  • 김관주;김재환;유상욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.622-628
    • /
    • 1998
  • The SONAR(SOund NAvigation and Ranging) is the system that detects objects and finds their locations in water by using the echo ranging technique. In this paper, the scattering phenomena for a rigid spherical scatterer will be analyzed using closed form solution, Boundary Element Method and Finite Element Method. Scattering analysis for an elastic spherical scatterer will be analyzed, later. In oder to analyzing the sound wave scattering phenomena for an elastic scatterer in water coupled problem between acoustic and vibration must be considered.

  • PDF

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF

Transient interactions between submerged elastic shells and acoustic shock waves from a moving source (움직이는 소스와 구형쉘의 상호작용 해석)

  • 이민형;이범헌;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.85-89
    • /
    • 2001
  • The problem of the transient interaction of a plane acoustic shock wave which has an infinitely steep wave front with a cylindrical or spherical elastic shell has been studied analytically from early fifties based on the integral transform and series solution techniques. Huang adopted an inverse Laplace transform, and used a finite number of terms of the infinite series expansion of the equations for the shells. In the 1990s, the results have been used by many authors for validation of computer codes. The object of this paper is to discuss the interaction between a moving source and submerged spherical shells. Since the center of source is moving the first contact location between the waves and shell changes depending on the source velocity and distance. These are considered in the analysis. Furthermore, constant source strength and decreasing strength are considered in the analysis. Radial velocities at several locations on the structure are obtained and the results are discussed.

  • PDF

According to the Wavelength, the Analysis of Individual Eye Model's Aberration Change (파장에 따른 개별모형안의 수차변화 분석)

  • Kim, Se-Jin;Lim, Hyeon-Seon;Kim, Bong-Hwan;Kouh, Jeong-Hwi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.61-64
    • /
    • 2008
  • Purpose: The analysis of individual eye model designed from clinical demonstration about emmetropia shows that the aberration would be changed by the wave change. Method: The model on the basis of clinical demonstration of eye ball is designed in a form of having 4 refraction surfaces and a constant refractive index. We analyzed designed twelve individual eye model into aberrations changes, as giving changes Fraunhofer lines's six wavelengths. Result: About individual eye model, change in the wavelength of the wavefront aberrations analysis using the Zernike coefficient. This data indicate that the shorter wave is, the more defocus increases and the deviation value of spherical aberration and RMS are widened. Conclusion: As quantity of defocus according to result wavelength change is shorter and shorter, inclination which is similar twelve individual eye model is bigger and bigger and individual eye model majority of cases, little change, and change is shown in part individual eye model is a significant performance degradation can be raised.

  • PDF