• 제목/요약/키워드: Spherical Material

검색결과 490건 처리시간 0.03초

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권2호
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

부양가스증발응축법으로 제조된 Ti-Ni 합금 나노분말의 특성 연구 (A study on the Particulate Properties of Ti-Ni alloy Nanopowders Prepared by Levitational Gas Condensation Method)

  • 한병선;엄영랑;이민구;김길무;이창규
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.396-400
    • /
    • 2006
  • The Ti-Ni alloy nanopowders were synthesized by a levitational gas condensation (LGC) by using a micron powder feeding system and their particulate properties were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The starting Ti and Ni micron powders $150{\mu}m$ were incorporated into the micron powder feeding system. An ingot type of the Ti-Ni ahoy was used as a seed material for the levitation and evaporation reactions. The collected powders were finally passivated by oxidation. The x-ray diffraction experiments have shown that the synthesized powders were completely alloyed with Ti and Ni and comprised of two different cubic and monoclinic crystalline phases. The TEM results showed that the produced powders were very fine and uniform with a spherical particle size of 18 to 32nm. The typical thickness of a passivated oxide layer on the particle surface was about 2 to 3 nm. The specific surface area of the Ti-Ni alloy nanopowders was $60m^2/g$ based on BET method.

$CO_2$ Laser에 의한 Polyamide-6 소결과 그 영향에 관한 연구 (A Study on Polyamide-6 Sintering and Effect by $CO_2$ Laser)

  • 배성우;김동수;안영진;김형일;최기섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.197-198
    • /
    • 2006
  • In the solid freeform fabrication (SFF) system using selective laser sintering (SLS), polyamide-12 powder is currently recognized as general material. In this study, some kinds of polyamide-6 powders with different shape and particlesize were fabricated to investigate the formability, the microstructure and mechanical properties. Also, to develop a more elaborate and rapid system, this study employs a new SLS device with a 3-axis dynamic focusing scanner system instead of the existing fe lens used in commercial SLS. Polyamide-6 powders having the average size of 100 m were treated thermally in order to keep the spherical symmetry in shape. These polyamide-6 powders were mixed with polyamide-12 powders having the average size of 50 m to give the bimodal distribution of size. These mixed powders showed the better fabrication in the selective laser sintering process because the smaller particles of polyamide-11 played an important role in the compact packing of powders by filling the void space between the large particles of polyamide-6. Also, Experiments have performed to evaluate the effect of a scanning path and sintering parameters by fabricating the various 3D objects.

  • PDF

인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구 (A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water)

  • 박복춘;김선도;백병준;이동환
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

오일팜 부산물을 이용한 유기충전제 제조 가능성 평가 (Effect of New Organic Filler Made From Oil Palm Biomass on Paperboard Properties)

  • 이지영;김철환;성용주;박종혜;김은혜
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.61-67
    • /
    • 2015
  • As the production of palm oil has been increased, the generation of oil palm biomass is also increased and the utilization of the oil palm biomass become more significant topic. One third of the oil palm biomass is empty fruit bunch (EFB) and the other two thirds are oil palm trunks and fronds. However, the effective use of oil palm biomass has not been developed and most of it is discarded near oil palm plants. In this study, we investigated the applicability of EFB to the paperboard mills, as an organic filler. The new organic filler was manufactured in a laboratory by grinding and fractionating dried EFB powder, and its properties were analyzed. The particles of EFB organic filler were larger and more spherical than those of the commercial wood powder. The use of EFB organic filler resulted in a higher bulk of the handsheets with similar trends of physical strength, compared to those made with wood powder. It was concluded that EFB could be used as a raw material to manufacture organic filler for paperboard production.

얕은 감세지내의 극한 세굴잠재능 예측 (Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool)

  • 손광익
    • 물과 미래
    • /
    • 제27권1호
    • /
    • pp.123-131
    • /
    • 1994
  • 댐 여수로(Spillway)나 파이프 암거(Pipe Culvert)로부터 방류되는 \ulcorner은 수공구조물 하류부의 에너지 감소 목적으로 사용되는 감세지내의 세굴을 유발하며 수공구조물의 기초부위까지 세굴이 진행되면 수공구조물의 구조적 안정성까지 위협하게 된다. 따라서 감세지내의 세굴을 예측하기 위한 많은 연구와 경험적 공식들이 발표되었으나 공식별 예측범위가 너무 넓어 감세지 설계에 적용할 수 있는 공식의 선정이 사실상 불가능하다. 본 연구는 세굴에 영향을 미치는 인자들을 분석할 수 있도록 사각형 감세지내에서 원형수중\ulcorner을 사용한 새로운 실험방법의 개발과 실험을 통해 \ulcorner의 크기와 하상물질의 크기비가 세굴을 지배하는 주요인자인 사실을 알아내고, 각종 세굴 지배인자와 침강지내의 \ulcorner확산 및 \ulcorner모멘텀 이론을 이용한 두 개의 \ulcorner확산 지역에 대하여 네가지의 반이론적 세굴 예측공식을 제시하였다.

  • PDF

황산 제1철을 이용한 방추형 괴타이트 나노 입자의 합성 (Synthesis of Spindle Shape α-FeOOH Nanoparticle from Ferrous(II) Sulfate Salt)

  • 한양수;유희준;문지웅;오유근
    • 한국세라믹학회지
    • /
    • 제42권11호
    • /
    • pp.722-728
    • /
    • 2005
  • A wet-chemical route was utilized to obtain nanosized crystalline goethite ($\alpha$-FeOOH) particle, which was known as an oxidation catalyst in reducing carbon monoxide (CO) and dioxine during incineration. A cost-effective $FeSO_4{\cdot}7H_2O$ was used as starting raw material and a successive process of hydrolysis-oxidation was utilized as synthetic method. The effects of the initial $Fe^{2+}$ concentration, hydrolysis time and oxidation period on the crystalline phase and particle characteristics were systematically investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and BET analyses. It was found that the spindle-shaped crystalline $\alpha$-FeOOH particle with the width of 70 nm and the length of 200 nm could be obtained successfully when the initial concentration of 1.5 M, hydrolysis time of 4h, and oxidation period of 10 h, respectively. In addition, it was observed that the spindle-shaped $\alpha$-FeOOH particle consisted of nano-sized primary crystallites of $30\~50\;nm$, which were de-agglomerated into individual particle and successively re­agglomerated into spherical or irregular-shaped agglomerates beyond certain periods in the hydrolysis and oxidation process.

Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구 (Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films)

  • 홍순현;이현주;김양도
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

지질 및 전분성 종자에서 지질 및 지질가수분해효소의 분포 (Distribution of Lipid and Lipase in Lipid-and Starch-Rich Seeds)

  • 김우갑
    • Journal of Plant Biology
    • /
    • 제35권3호
    • /
    • pp.219-227
    • /
    • 1992
  • 지질성 종자(해바라기, 피마자, 잣나무)와 전분성 종자(완두, 옥수수)를 대상으로 배유와 자엽세포내의 저장지질의 형성, 분포 및 구조적 변화 등과 지질가수분해효소의 활성부위 및 세포내 분포양상 등을 세포화학적 방법을 이용하여 조사하였다. 채종후의 지질 및 전분성 종자의 배유와 저장성 자엽세포에는 구형의 단백과립과 지질소구인 스페로솜, 전분과립 등의 저장물질이 널리 분포하였으며 세포내소기관은 드물게 관찰되었다. 활면소포체에서 형성되어 방출된 소포들과 스페로솜의 초기 단계로 여겨지는, 전자밀도가 낮은 막성의 과립들은 염색상이 스페로솜의 그것과 동일하였다. 조면소포체에서 방출된 전자밀도가 높은 과립들은 원형질막의 인접부위에서 관찰되었다. 지질염색반응 결과, 일반적인 미세구조의 염색상과는 상이하게 단백과립내의 단백질보다는 구형의 스페로솜의 전자밀도가 높고 균일함이 확인되어 스페로솜의 주요 구성성분은 지질임을 알 수 있었다. 스페로솜과 활면소포체에서 방출하는 물질을 함유한 소포는 염색상이 동일하였다. 지질가수분해효소는 분해과정이 진행중인 스페로솜의 기질과 막 주변부, 그리고 원형질막 부근에서 강한 활성을 보였다.

  • PDF

고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동 (Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion)

  • 윤은유;채홍준;김택수;이종수;김형섭
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.