DOI QR코드

DOI QR Code

A study on the Particulate Properties of Ti-Ni alloy Nanopowders Prepared by Levitational Gas Condensation Method

부양가스증발응축법으로 제조된 Ti-Ni 합금 나노분말의 특성 연구

  • Han, B.S. (Nuclear Nano materials Development Lab., Korea Atomic Energy Research Institute, Department of Materials Engineering, Chungnam National University) ;
  • Uhm, Y.R. (Nuclear Nano materials Development Lab., Korea Atomic Energy Research Institute) ;
  • Lee, M.K. (Nuclear Nano materials Development Lab., Korea Atomic Energy Research Institute) ;
  • Kim, G.M. (Department of Materials Engineering, Chungnam National University) ;
  • Rhee, C.K. (Nuclear Nano materials Development Lab., Korea Atomic Energy Research Institute)
  • 한병선 (한국원자력연구소 원자력나노소재응용랩, 충남대학교 재료공학부) ;
  • 엄영랑 (한국원자력연구소 원자력나노소재응용랩) ;
  • 이민구 (한국원자력연구소 원자력나노소재응용랩) ;
  • 김길무 (충남대학교 재료공학부) ;
  • 이창규 (한국원자력연구소 원자력나노소재응용랩)
  • Published : 2006.12.28

Abstract

The Ti-Ni alloy nanopowders were synthesized by a levitational gas condensation (LGC) by using a micron powder feeding system and their particulate properties were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The starting Ti and Ni micron powders $150{\mu}m$ were incorporated into the micron powder feeding system. An ingot type of the Ti-Ni ahoy was used as a seed material for the levitation and evaporation reactions. The collected powders were finally passivated by oxidation. The x-ray diffraction experiments have shown that the synthesized powders were completely alloyed with Ti and Ni and comprised of two different cubic and monoclinic crystalline phases. The TEM results showed that the produced powders were very fine and uniform with a spherical particle size of 18 to 32nm. The typical thickness of a passivated oxide layer on the particle surface was about 2 to 3 nm. The specific surface area of the Ti-Ni alloy nanopowders was $60m^2/g$ based on BET method.

Keywords

References

  1. S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki : J. Phys., 43 (1982) 255 https://doi.org/10.1051/jphys:01982004302025500
  2. H. C. Lin and S. K. Wu : Acta. Metall. Mater., 42 (1944) 1623 https://doi.org/10.1016/0956-7151(94)90371-9
  3. E.-S. Mohammed, E.-S. Martha and F. B. Helge : Biomaterials., 22 (2001) 2153 https://doi.org/10.1016/S0142-9612(00)00406-3
  4. D. G. Morris and M. A. Morris : Mater. Sci. Eng. A., 110 (1989) 139 https://doi.org/10.1016/0921-5093(89)90165-2
  5. M. Igharo and V. Wood : Powder Metall., 28 (1985) 131 https://doi.org/10.1179/pom.1985.28.3.131
  6. S. M. Green, D. M. Grant and R. Kelly : Powder Metall., 40 (1977) 43
  7. G. F. Bastin and D. Rieck : Metall. Trans., 5 (1974) 1817 https://doi.org/10.1007/BF02644146
  8. R. Birringer, H. Gleiter, H.-P. Klein and P. Marquardt :Phys. Lett. A., 102 (1984) 365 https://doi.org/10.1016/0375-9601(84)90300-1
  9. I. Manna, P. P. Chattopadhyay, F. Banhart and H. J. Fecht : Mater. Lett., 58 (2004) 403 https://doi.org/10.1016/S0167-577X(03)00511-1
  10. K. W. Liu and F. Mucklich : Scripta Mater., 49 (2003) 207 https://doi.org/10.1016/S1359-6462(03)00262-8
  11. C. Suryanarayana : Prog. Mater. Sci., 46 (2001) 1 https://doi.org/10.1016/S0079-6425(99)00010-9
  12. V. V. Srdic, M. Winterer and H. Hahn : Nanostruct. Mater., 12 (1999) 95 https://doi.org/10.1016/S0965-9773(99)00073-2
  13. S. Benfer and E. Knozinger : J. Mater. Chem., 9 (1999) 1203 https://doi.org/10.1039/a809164a
  14. Y. R. Uhm, W. W. kim and C. K. Rhee : J. Korean powder Matall. Inst., 11 (2004) 1