• 제목/요약/키워드: Sphere Wheel

검색결과 9건 처리시간 0.023초

구형 투척 로봇의 전방향 충격흡수 구조 설계 및 동적 자세 안정화 (Design of Omnidirectional Shock Absorption Mechanism and Stabilizing Dynamic Posture of Miniature Sphere Type Throwing Robot)

  • 정원석;김영근;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.281-287
    • /
    • 2016
  • In this paper, we propose a novel compact surveillance throwing robot which has an omnidirectional shock absorption mechanism and an active control part of wheel treads to stabilize the dynamic posture of a miniature sphere type throwing robot. This throwing robot, which weighs 1.14kg and is 110mm in height, is designed in a spherical shape to be easily grabbed for throwing. Also, the omnidirectional shock absorbing aspect is designed using several leaf springs connected with inner and outer wheels. The wheel treads control part consists of a link mechanism. Through the field experiments, this robot is validated to withstand higher than 17Ns of omnidirectional impulse and increase the stabilized max speed three times from 11 rad/s to 33rad/s by increasing wheel treads.

두 팔을 가지는 변형 가능한 구형로봇 (A Deformable Spherical Robot with Two Arms)

  • 안성수;김영민;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1060-1067
    • /
    • 2010
  • In this paper, we present a new type of spherical robot having two arms. This robot, called KisBot, mechanically consists of three parts, a wheel-shaped body and two rotating semi-spheres. In side of each semi-sphere, there exists an arm which is designed based on slider-crank mechanism for space efficiency. KisBot has hybrid types of driving mode: rolling and wheeling. In the rolling mode, the robot folds its arms through inside of itself and uses them as pendulum, then the robot works like a pendulum-driven robot. In the wheeling mode, two arms are extended from inside of the robot and are contacted to the ground, then the robot works like a one-wheel car. The Robot arms can be used as a brake during rolling mode and add friction to the robot for climbing a slope during wheeling mode. We developed a remote controlled type robot for experiment. It contains two DC motors which are located in the center of each semi-sphere for main propulsion, two RC motors for each arm operation, speed controllers for each semi-sphere, batteries for main power source, and other mechanical components. Experiments for the rolling and wheeling mode verify the hybrid driving ability and efficiency of the our proposed spherical robot.

축방향 충격흡수 향상을 위한 소형구형 투척 로봇구조 설계 (Design of a Miniature Sphere Type Throwing Robot with an Axial Direction Shock Absorption Mechanism)

  • 정원석;김영근;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.361-366
    • /
    • 2015
  • In this paper, we propose a novel surveillance throwing robot which is compact, light-weight and has an efficient shock absorption mechanism. The throwing robot is designed in a spherical shape to be easily grabbed by a hand for throwing. Also, a motor-wheel linking mechanism is designed to be robustly protected from shocks upon landing. The proposed robot has a weight of 2.2kg and the diameter of its wheels is 150 mm. Through the field experiments, the designed robot is validated to withstand higher than 13Ns of impulse.

통계적방법을 이용한 연삭표면의 3차원모델링 (3D Modeling of Ground Surface with Statistical Method)

  • 김동길;김영태;이상조
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

플레이 볼 (Play Ball)

  • 박준혁;남덕우;이종비;김두호;강민식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2008년도 추계학술대회 논문집
    • /
    • pp.513-514
    • /
    • 2008
  • PDF

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

  • Kim, Sang Hyuk;Yun, Yong-Hyun;Ham, Seon Young;Mihn, Byeong-Hee;Ki, Ho-Chul;Yoon, Myung-Kyoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.171-182
    • /
    • 2017
  • In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the $20^{th}$ year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

홍대용 통천의의 혼천의 연구 (A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG)

  • 민병희;윤용현;김상혁;기호철
    • 천문학논총
    • /
    • 제36권3호
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

  • Lee, Yong-Sam;Kim, Sang-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.221-232
    • /
    • 2012
  • We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type $Honsang$ (celestial globe). Results from our study on the remaining $Honsangs$ in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type $Honsang$. A $Honui$ (armillary sphere) and $Honsang$ using the water-hammering method were manufactured in $Joseon$ in 1435 (the 17th year of King $Sejong$). $Jang$ $Yeong-Sil$ developed the $Honsang$ system based on the water-operation method of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type $Honsang$ in $Joseon$ probably adopted the $Cheonhyeong$ (天衡; oriental escapement device) system of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China and the overflow mechanism of $Jagyeongnu$ (striking clepsydra) in $Joseon$, etc. In addition to the $Cheonryun$ system, more gear instruments were needed to stage the rotation of the $Honsang$ globe and the sun's movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the $Cheonhyeong$ system, and the $Giryun$ system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on $Heumgyeonggaknu$, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the $Joseon$ dynasty.