• 제목/요약/키워드: Spermatogonial stem cells

검색결과 44건 처리시간 0.029초

Isolation and Identification of Prepubertal Buffalo (Bubalus bubalis) Spermatogonial Stem Cells

  • Feng, Wanyou;Chen, Shibei;Do, Dagiang;Liu, Qinyou;Deng, Yanfei;Lei, Xiaocan;Luo, Chan;Huang, Ben;Shi, Deshun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1407-1415
    • /
    • 2016
  • Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.

Cardiac Differentiation of Chicken Spermatogonial Stem Cells-A Directional Approach

  • Sodhi, Simrinder Singh;Jeong, Dong Kee
    • Reproductive and Developmental Biology
    • /
    • 제38권4호
    • /
    • pp.137-142
    • /
    • 2014
  • A tremendous increase in the human population has put poultry industry under an increased pressure to meet steep increase in the demand. Poultry is contributing 25% of the total world's meat production and lesser cost of investment per bird makes it more suitable for the further breeding programmes. Major poultry diseases frequently lead to cardiac damage and cause huge economic losses to poultry industry due to mortality. The in vitro embryonic stem cell (ESC) technology has a futuristic approach for homogeneous populace of differentiated cells, for their further transplantations. During in vitro conditions the differentiated cell populace can be used in grafting and transplantation processes to regenerate damaged tissues. Therefore, the current study targeted the use of spermatogonial stem cells (SSCs) in the poultry production system through cardiac regeneration. The current study will also open new boulevard for the similar kind of research in other livestock species for the management of heart diseases.

Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells

  • Lee, Seung-Won;Wu, Guangming;Choi, Na Young;Lee, Hye Jeong;Bang, Jin Seok;Lee, Yukyeong;Lee, Minseong;Ko, Kisung;Scholer, Hans R.;Ko, Kinarm
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.631-638
    • /
    • 2018
  • Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows longterm SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

Evaluating the effect of conditioned medium from mesenchymal stem cells on differentiation of rat spermatogonial stem cells

  • Hoda Fazaeli;Mohsen Sheykhhasan;Naser Kalhor;Faezeh Davoodi Asl;Mojdeh Hosseinpoor Kashani;Azar Sheikholeslami
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.508-517
    • /
    • 2023
  • In cancer patients, chemo/radio therapy may cause infertility by damaging the spermatogenesis affecting the self-renewal and differentiation of spermatogonial stem cells (SSCs). In vitro differentiation of stem cells especially mesenchymal stem cells (MSCs) into germ cells has recently been proposed as a new strategy for infertility treatment. The aim of this study was to evaluate the proliferation and differentiation of SSCs using their co-culture with Sertoli cells and conditioned medium (CM) from adipose tissue-derived MSCs (AD-MSCs). Testicular tissues were separated from 2-7 days old neonate Wistar Rats and after mechanical and enzymatic digestion, the SSCs and Sertoli cells were isolated and cultured in Dulbecco's modified eagle medium with 10% fetal bovine serum, 1X antibiotic, basic fibroblast growth factor, and glial cell line-derived neurotrophic factor. The cells were treated with the CM from AD-MSCs for 12 days and then the expression level of differentiation-related genes were measured. Also, the expression level of two major spermatogenic markers of DAZL and DDX4 was calculated. Scp3, Dazl, and Prm1 were significantly increased after treatment compared to the control group, whereas no significant difference was observed in Stra8 expression. The immunocytochemistry images showed that DAZL and DDX4 were positive in experimental group comparing with control. Also, western blotting revealed that both DAZL and DDX4 had higher expression in the treated group than the control group, however, no significant difference was observed. In this study, we concluded that the CM obtained from AD-MSCs can be considered as a suitable biological material to induce the differentiation in SSCs.

Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice

  • Ahn, Jin Seop;Ryu, Hyun-Sung;Jung, Sang-Eun;Shin, Beom-Jin;Won, Jong-Hyun;Um, Tea Gun;Oh, Huijo;Kim, Seo-Hee;Ryu, Buom-Yong
    • 한국동물생명공학회지
    • /
    • 제35권4호
    • /
    • pp.289-296
    • /
    • 2020
  • Spermatogonial stem cells are self-renewal and differentiate into sperm in post-pubertal mammals. There exists a balance between the self-renewal and differentiation in the testes. Spermatogonial stem cells make up only 0.03% of testicular cells in adult mice. These cells maintain sperm production by differentiating after puberty. Therefore, analyzing the expression of genes associated with spermatogenesis is critical for understanding differentiation. The present study aimed to establish the postnatal period of cells in relation to spermatogenesis. To study the expression of differentiated and undifferentiated marker genes in enriched spermatogonial stem cells, in vitro culture was performed and cells from pup (6-8-day-old) and adult (4-months-old) testicular tissues were isolated. As a result, undifferentiated genes, Pax7, Plzf, GFRa1, Etv5 and Bcl6b, were highly increased in cultured spermaotogonial stem cells compared with pup and adult testicular cells. On the other hands, differentiated gene, c-kit was highly increased in adult testicular cells, Also Stra8 gene was highly increased in pup and adult testicular cells. This study provides a better understanding of spermatogenesis-associated gene expression during postnatal periods.

A Novel Feeder-Free Culture System for Expansion of Mouse Spermatogonial Stem Cells

  • Choi, Na Young;Park, Yo Seph;Ryu, Jae-Sung;Lee, Hye Jeong;Arauzo-Bravo, Marcos J.;Ko, Kisung;Han, Dong Wook;Scholer, Hans R.;Ko, Kinarm
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.473-479
    • /
    • 2014
  • Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost-effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.

Comparative Analysis for In Vitro Differentiation Potential of Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Multipotent Spermatogonial Stem Cells into Germ-lineage Cells

  • Go, Young-Eun;Kim, Hyung-Joon;Jo, Jung-Hyun;Lee, Hyun-Ju;Do, Jeong-Tae;Ko, Jung-Jae;Lee, Dong-Ryul
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.41-52
    • /
    • 2011
  • In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/$m{\ell}$ BMP4 or 0.01 ${\mu}M$ RA. In the BMP4-treated group, GFR-${\alpha}1$ and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR-${\alpha}1$ and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1 and immunocytochemistry using GFR-${\alpha}1$ antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.

A Testicular Autoantigen Capable of Binding Igg Is Expressed by Undifferentiated Spermatogonial Stem Cells after Busulfan Treatment

  • Lee Mi-Suk;Gwon Deuk-Nam;Park Chan-Gyu;Kim Jin-Hoe
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.22-22
    • /
    • 2002
  • Identification of spermatogonial stern cell-specific surface molecules is important in understanding the molecular mechanisms underlying the maintenance and differentiation of these cells. We have found that spermatogonia from busulfan treated mice expressed an autoantigen that distinguishes between undifferentiated and differentiated spermatogonia. Four to six weeks after busulfan treatment, germ cells located in the basal compartment of seminiferous epithelium show isotype-specific IgG deposits that form due to autoimmunity. (omitted)

  • PDF

Xenotransplantation of Pig Spermatogonia into Mouse Testis

  • 이미숙;최윤정;권득남;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.82-82
    • /
    • 2003
  • The objective of the present study was to investigate the survival effect after transplantation of pig spermatogonia cells into mouse testis. Donor cells were collected from porcine testis and the isolated spermatogonial stem cells were labeled with a fluorescent marker before transplantation and transplanted into testes of busulfan-treated recipient mice. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Transplanted germ cells were present in the seminiferous epithelium at 4 weeks after the transplantation, but any differentiating porcine-derived cells were not detected in mouse testis. These results indicate that porcine-derived spermatogonial stem cells can be survived in the recipient, but suggest that porcine-derived male stem cells can not proceed to further differentiating step without helping of immunosuppressor agents.

  • PDF