DOI QR코드

DOI QR Code

Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells

  • Lee, Seung-Won (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Wu, Guangming (Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine) ;
  • Choi, Na Young (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Lee, Hye Jeong (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Bang, Jin Seok (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Lee, Yukyeong (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Lee, Minseong (Department of Stem Cell Biology, Konkuk University School of Medicine) ;
  • Ko, Kisung (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Scholer, Hans R. (Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine) ;
  • Ko, Kinarm (Department of Stem Cell Biology, Konkuk University School of Medicine)
  • Received : 2017.11.09
  • Accepted : 2018.06.25
  • Published : 2018.07.31

Abstract

Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows longterm SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.

Keywords

References

  1. Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195. https://doi.org/10.1038/nature05950
  2. Brustle, O., Jones, K.N., Learish, R.D., Karram, K., Choudhary, K., Wiestler, O.D., Duncan, I.D., and McKay, R.D. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754-756. https://doi.org/10.1126/science.285.5428.754
  3. Choi, N.Y., Park, Y.S., Ryu, J.S., Lee, H.J., Arauzo-Bravo, M.J., Ko, K., Han, D.W., Scholer, H.R., and Ko, K. (2014). A novel feeder-free culture system for expansion of mouse spermatogonial stem cells. Mol. Cells 37, 473-479. https://doi.org/10.14348/molcells.2014.0080
  4. Dann, C.T., Alvarado, A.L., Molyneux, L.A., Denard, B.S., Garbers, D.L. and Porteus, M.H. (2008). Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 26, 2928-2937. https://doi.org/10.1634/stemcells.2008-0134
  5. Diaferia, G.R., Conti, L., Redaelli, S., Cattaneo, M., Mutti, C., DeBlasio, P., Dalpra, L., Cattaneo, E., and Biunno, I. (2011). Systematic chromosomal analysis of cultured mouse neural stem cell lines. Stem Cells Dev. 20, 1411-1423. https://doi.org/10.1089/scd.2010.0359
  6. Drukker, M., Tang, C., Ardehali, R., Rinkevich, Y., Seita, J., Lee, A.S., Mosley, A.R., Weissman, I.L., and Soen, Y. (2012). Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat. Biotechnol. 30, 531-542. https://doi.org/10.1038/nbt.2239
  7. Fan, G., Wen, L., Li, M., Li, C., Luo, B., Wang, F., Zhou, L., and Liu, L. (2011). Isolation of mouse mesenchymal stem cells with normal ploidy from bone marrows by reducing oxidative stress in combination with extracellular matrix. BMC Cell Biol. 12, 30. https://doi.org/10.1186/1471-2121-12-30
  8. Gaztelumendi, N., and Nogues, C. (2014). Chromosome instability in mouse embryonic stem cells. Sci. Rep. 4, 5324.
  9. Hammerick, K.E., Huang, Z., Sun, N., Lam, M.T., Prinz, F.B., Wu, J.C., Commons, G.W., and Longaker, M.T. (2011). Elastic properties of induced pluripotent stem cells. Tissue Eng. Part A 17, 495-502.
  10. Igelmund, P., Fleischmann, B.K., Fischer, I.R., Soest, J., Gryshchenko, O., Bohm-Pinger, M.M., Sauer, H., Liu, Q., and Hescheler, J. (1999). Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue culture. Pflugers Arch. 437, 669-679. https://doi.org/10.1007/s004240050831
  11. Josse, C., Schoemans, R., Niessen, N.A., Delgaudine, M., Hellin, A.C., Herens, C., Delvenne, P., and Bours, V. (2010). Systematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 19, 1167-1173. https://doi.org/10.1089/scd.2009.0264
  12. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S. and Shinohara, T. (2003a). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612-616. https://doi.org/10.1095/biolreprod.103.017012
  13. Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Ogura, A., Toyokuni, S. and Shinohara, T. (2003b). Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum. Reprod. 18, 2660-2667. https://doi.org/10.1093/humrep/deg483
  14. Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S., Kato, T., Kazuki, Y., Toyokuni, S., et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001-1012. https://doi.org/10.1016/j.cell.2004.11.011
  15. Kanatsu-Shinohara, M., Morimoto, H., and Shinohara, T. (2016). Enrichment of mouse spermatogonial stem cells by the stem cell dye CDy1. Biol. Reprod. 94, 13.
  16. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., McLaughlin, K.J., Scholer, H.R., et al. (2004). Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078-1083. https://doi.org/10.1038/sj.embor.7400279
  17. Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411-419. https://doi.org/10.1016/j.cell.2009.01.023
  18. Ko, K., Tapia, N., Wu, G., Kim, J.B., Bravo, M.J., Sasse, P., Glaser, T., Ruau, D., Han, D.W., Greber, B., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87-96. https://doi.org/10.1016/j.stem.2009.05.025
  19. Ko, K., Arauzo-Bravo, M.J., Kim, J., Stehling, M., and Scholer, H.R. (2010). Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nat. Protoc. 5, 921-928. https://doi.org/10.1038/nprot.2010.44
  20. Ko, K., Wu, G., Arauzo-Bravo, M.J., Kim, J., Francine, J., Greber, B., Muhlisch, J., Joo, J.Y., Sabour, D., Fruhwald, M.C., et al. (2012). Autologous pluripotent stem cells generated from adult mouse testicular biopsy. Stem Cell Rev. 8, 435-444. https://doi.org/10.1007/s12015-011-9307-x
  21. Lee, S., Lee, H., Hwang, H., Ko, K., Han, D. and Ko, K. (2015). Optimization of Matrigel-based culture for expansion of neural stem cells. Anim. Cell Syst. 19, 175-180. https://doi.org/10.1080/19768354.2015.1035750
  22. Li, Y., Zhang, Q., Yin, X., Yang, W., Du, Y., Hou, P., Ge, J., Liu, C., Zhang, W., Zhang, X., et al. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21, 196-204. https://doi.org/10.1038/cr.2010.142
  23. Liu, X., Wu, H., Loring, J., Hormuzdi, S., Disteche, C.M., Bornstein, P. and Jaenisch, R. (1997). Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dynamics 209, 85-91. https://doi.org/10.1002/(SICI)1097-0177(199705)209:1<85::AID-AJA8>3.0.CO;2-T
  24. Luft, S., Pignalosa, D., Nasonova, E., Arrizabalaga, O., Helm, A., Durante, M. and Ritter, S. (2014). Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 760, 56-63. https://doi.org/10.1016/j.mrgentox.2013.12.004
  25. Miura, M., Miura, Y., Padilla-Nash, H.M., Molinolo, A.A., Fu, B., Patel, V., Seo, B.M., Sonoyama, W., Zheng, J.J., Baker, C.C., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24, 1095-1103. https://doi.org/10.1634/stemcells.2005-0403
  26. Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct. 26, 137-148. https://doi.org/10.1247/csf.26.137
  27. Page, J.L., Johnson, M.C., Olsavsky, K.M., Strom, S.C., Zarbl, H. and Omiecinski, C.J. (2007). Gene expression profiling of extracellular matrix as an effector of human hepatocyte phenotype in primary cell culture. Toxicol Sci. 97, 384-397. https://doi.org/10.1093/toxsci/kfm034
  28. Pesce, M., and Scholer, H.R. (2000). Oct-4: control of totipotency and germline determination. Mol. Reprod. Dev. 55, 452-457. https://doi.org/10.1002/(SICI)1098-2795(200004)55:4<452::AID-MRD14>3.0.CO;2-S
  29. Rebuzzini, P., Neri, T., Mazzini, G., Zuccotti, M., Redi, C.A. and Garagna, S. (2008a). Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenet Genome Res. 121, 18-24. https://doi.org/10.1159/000124377
  30. Rebuzzini, P., Neri, T., Zuccotti, M., Redi, C.A. and Garagna, S. (2008b). Chromosome number variation in three mouse embryonic stem cell lines during culture. Cytotechnology 58, 17-23. https://doi.org/10.1007/s10616-008-9164-x
  31. Rebuzzini, P., Pignalosa, D., Mazzini, G., Di Liberto, R., Coppola, A., Terranova, N., Magni, P., Redi, C.A., Zuccotti, M. and Garagna, S. (2012). Mouse embryonic stem cells that survive gamma-rays exposure maintain pluripotent differentiation potential and genome stability. J. Cell. Physiol. 227, 1242-1249. https://doi.org/10.1002/jcp.22908
  32. Rebuzzini, P., Zuccotti, M., Redi, C.A. and Garagna, S. (2015). Chromosomal abnormalities in embryonic and somatic stem cells. Cytogenet Genome Res. 147, 1-9. https://doi.org/10.1159/000441645
  33. Scholer, H.R., Dressler, G.R., Balling, R., Rohdewohld, H., and Gruss, P. (1990). Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9, 2185-2195. https://doi.org/10.1002/j.1460-2075.1990.tb07388.x
  34. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  35. Tegelenbosch, R.A., and de Rooij, D.G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193-200. https://doi.org/10.1016/0027-5107(93)90159-D
  36. Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971-974. https://doi.org/10.1038/nbt1001-971
  37. Xu, C., Jiang, J., Sottile, V., McWhir, J., Lebkowski, J., and Carpenter, M.K. (2004). Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 22, 972-980. https://doi.org/10.1634/stemcells.22-6-972

Cited by

  1. Perspectives of pluripotent stem cells in livestock vol.13, pp.1, 2018, https://doi.org/10.4252/wjsc.v13.i1.1