• Title/Summary/Keyword: Spent nuclear fuel management

Search Result 129, Processing Time 0.028 seconds

On-Site Transport and Storage of Spent Nuclear Fuel at Kori NPP by KN-12 Transport Cask (KN-12 운반용기를 이용한 고리 사용후핵연료 소내수송.저장)

  • Chung, Sung-Hwan;Baeg, Chang-Yeal;Choi, Byung-Il;Yang, Ke-Hyung;Lee, Dae-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • Since 2002, more than 400 PWR spent nuclear fuel assemblies have been transported and stored on-site using transport casks in order to secure the storage capacity of PWR spent nuclear fuel of Kori nuclear power plant. The complete on-site transport system, which includes KN-12 transport casks, the related equipment and transport vehicles, had been developed and provided. KN-12 transport casks were designed, fabricated and licensed in accordance with Korean and IAEA's transport regulations, and the related equipment was also provided in accordance with the related regulations. The on-site transport and storage operation using two KN-12 casks and the related equipment has been conducted, and the strict Quality Control and Radiation Safety Management through the whole process has been carried out so as to achieve the required safety and reliability of the on-site transport of spent nuclear fuel.

  • PDF

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Spent Nuclear Fuel Management in South Korea: Current Status and the Way Forward (사용후핵연료 관리 현안 및 정책 제언)

  • Hwang, Yongsoo;Chang, Sunyoung;Han, Jae-Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.312-323
    • /
    • 2015
  • This paper presents future directions for spent nuclear fuel and high-level radioactive waste management. The successes and failures of siting nuclear waste repository experienced by the United States and other countries are reviewed with the current policy stance. Further, the needs for establishing management policy, considering the high-level radioactive waste produced by the dismantlement, nuclear security concerns, and cost-effectiveness analysis for the total nuclear fuel cycle, are emphasised. Technical discussions are organised into three main topics: interim storage, permanent disposal, and reprocessing. Licensing regimes are also investigated to suggest strategic plans for research and development programmes in the Republic of Korea.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

A Comparative Study on the Economics of Reprocessing and Direct Disposal of Nuclear Spent Fuel (사용후 핵연료의 제처리와 직접 처분의 경제성 비교 연구)

  • Kang, Seong-Ku;Song, Jong-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Nuclear fuel cycle choices and costs are important in considering energy policies, fuel diversity, security of supply and associated social and environmental impacts. Particularly, the nuclear spent fuel is very important in view of high activity and the need of long term management. This study focuses on the comparison of reprocessing and direct disposal of nuclear spent fuel in terms of cost, safety and public acceptability. The results of the study show that the direct disposal is about 7% more economical than the reprocessing. In terms of safety, the results show that the risk of vitrified HLW (high-level radioactive waste) is less than directly disposed spent fuel. For the public acceptability, both of the methods are not well understood and therefore they are not accepted. In conclusion, it is necessary to guarantee the safety of the both spent fuel processing methods through continuous development of associated technology and to have a fuel cycle policy which should consider not only the economics but also social and environmental impacts.

  • PDF

Review for Applying Spent Fuel Pool Island (SFPI) during Decommissioning in Korea (원전해체시 독립된 사용후핵연료저장조 국내 적용 검토)

  • Baik, Jun-ki;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • In many nuclear power plant sites in Korea, high density storage racks were installed in the spent fuel pool to expand the spent fuel storage capacity. Nevertheless, the capability of the Hanbit nuclear site will be saturated by 2024. Also, 10 NPPs will reach their design life expiration date by 2029. In the case of the US, SFPI (Spent Fuel Pool Island) operated temporarily as a spent fuel storage option before spent nuclear fuels were transported to an interim storage facility or a final disposal facility. As a spent fuel storage option after shutdown during decommissioning, the SFPI concept can be expected to have the following effects: reduced occupational exposure, lower cost of operation, strengthened safety, and so on. This paper presents a case study associated with the regulations, operating experiences, and systems of SFPI in the US. In conclusion, the following steps are recommended for applying SFPI during decommissioning in Korea: confirmation of design change scope of SFPI and expected final cost, the submission of a decommissioning plan which is reflected in SFPI improvement plans, safety assessment using PSR, application of an operating license change for design change, regulatory body review and approval, design change, inspection by the regulatory body, education and commissioning for SFPI, SFPI operation and periodic inspection, and dismantling of SFPI.

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.