• Title/Summary/Keyword: Spent nuclear fuel

Search Result 913, Processing Time 0.05 seconds

Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister (심지층 고준위 핵폐기물 처분용기의 열응력 해석)

  • 하준용;권영주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF

Review of Instant Release Fractions of Long-lived Radionuclides in CANDU and PWR Spent Nuclear Fuels Under the Geological Disposal Conditions

  • Choi, Heui Joo;Koo, Yang-Hyun;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.231-241
    • /
    • 2022
  • Several countries, including Korea, are considering the direct disposal of spent nuclear fuels. The radiological safety assessment results published after a geological repository closure indicate that the instant release is the main radiation source rather than the congruent release. Three Safety Case reports recently published were reviewed and the IRF values of seven long-lived radionuclides, including relevant experimental results, were compared. According to the literature review, the IRF values of both the CANDU and low burnup PWR spent fuel have been experimentally measured and used reasonably. In particular, the IRF values of volatile long-lived nuclides, such as 129I and 135Cs, were estimated from the FGR value. Because experimental leaching data regarding high burnup spent nuclear fuels are extremely scarce, a mathematical modelling approach proposed by Johnson and McGinnes was successfully applied to the domestic high burnup PWR spent nuclear fuel to derive the IRF values of iodine and cesium. The best estimate of the IRF was 5.5% at a discharge burnup of 55 GWd tHM-1.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Canadian Deuterium and Uranium Reactor (중수로(CANDU)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, a complementary analysis for the structural safety evaluation of the spent nuclear fuel disposal canister developed for the Canadian Deuterium and Uranium(CANDU) reactor for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been performed. However this developed structural model of the spent nuclear fuel disposal canister which has 33 spent nuclear fuel baskets and whose diameter is 122cm is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been required to develop very much. There are two methods to reduce the weight of the CANDU canister model. The one is to alleviate severe design conditions such as external loads and safety factor. The other is to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number. Hence, in this paper a complementary analysis to alleviate such severe design conditions is carried out and simultaneously structural analyses to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number below 33 are carried out by varying the external load and the canister diameter for the reduction of the canister weight. The complementary analysis results show that the diameter of canister can be shortened below 122cm to reduce the weight of the spent nuclear fuel disposal canister.

PLUTONIUM MANAGEMENT OPTIONS: LIABILITY OR RESOURCE

  • Bairiot, Hubert
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • Since plutonium accounts for 40-50% of the power produced by uranium fuels, spent fuel contains only residual plutonium. Management of this plutonium is one of the aspects influencing the choice of a fuel cycle back-end option: reprocessing, direct disposal or wait-and-see. Different grades and qualities of plutonium exist depending from their specific generation conditions; all are valuable fissile material. Safeguard authorities watch the inventories of civil plutonium, but access to those data is restricted. Independent evaluations have led to an estimated current inventory of 220t plutonium in total (spent fuel, separated civil plutonium and military plutonium). If used as MOX fuel, it would be sufficient to feed all the PWRs and BWRs worldwide during 7 years or to deploy a FBR park corresponding to 150% of today' s installed nuclear capacity worldwide, which could then be exploited for centuries with the current stockpile of depleted and spent uranium. The energy potential of plutonium deteriorates with storage time of spent fuel and of separated plutonium, due to the decay of $^{241}Pu$, the best fissile isotope, into americium, a neutron absorber. The loss of fissile value of plutonium is more pronounced for usage in LWRs than in FBR. However, keeping the current plutonium inventory for an expected future deployment of FBRs is counterproductive. Recycling plutonium reduce the required volume for final disposal in an underground repository and the cost of final disposal. However, the benefits of utilizing an energy resource and of reducing final disposal liabilities are not the only aspects that determine the choice of a back-end policy.

Characteristics of Reduced Metal from Spent Oxide Fuel by Lithium

  • Kim Ik-Soo;Seo Chung-Seok;Shin Hee-Sung;Hwang Yong-Soo;Park Seong-Won
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.309-317
    • /
    • 2003
  • The mass balance of the unit processes of the Advanced spent fuel Conditioning Process was calculated to obtain basic information. Based on this mass balance, the changes in decay heat and radioactivity of the spent fuel due to the metallization in the high temperature molten salt system were estimated. The decay heat and the radioactivity were calculated by using the ORIGEN2 computer code, and the result showed that the decay heat and the radioactivity of the metallized spent fuel ingot were $24.27\%\;and\;24.24\%$, respectively, compared to those of oxide spent fuel.

Monte Carlo analysis of LWR spent fuel transmutation in a fusion-fission hybrid reactor system

  • Sahin, Sumer;Sahin, Haci Mehmet;Tunc, Guven
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1339-1348
    • /
    • 2018
  • The aim of this paper is to determine neutronic performances of the light water reactor (LWR) spent fuel mixed with fertile thorium fuel in a FFHR. Time dependent three dimensional calculations for major technical data, such as blanket energy multiplication, tritium breeding ratio, cumulative fissile fuel enrichment and burnup have been performed by using Monte Carlo Neutron-Particle Transport code MCNP5 1.4, coupled with a novel interface code MCNPAS, which is developed by our research group. A self-sustaining tritium breeding ratio (TBR>1.05) has been kept throughout the calculations. The study has shown that the fissile fuel quality will be improved in the course of the transmutation of the LWR spent in the FFHR. The latter has gained the reusable fuel enrichment level conventional LWRs between one and two years. Furthermore, LWR spent fuel - thorium mixture provides higher burn-up values than in light water reactors.