• Title/Summary/Keyword: Spent fuel pool

Search Result 77, Processing Time 0.029 seconds

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

Integrated Level 1-Level 2 decommissioning probabilistic risk assessment for boiling water reactors

  • Mercurio, Davide;Andersen, Vincent M.;Wagner, Kenneth C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.627-638
    • /
    • 2018
  • This article describes an integrated Level 1-Level 2 probabilistic risk assessment (PRA) methodology to evaluate the radiological risk during postulated accident scenarios initiated during the decommissioning phase of a typical Mark I containment boiling water reactor. The fuel damage scenarios include those initiated while the reactor is permanently shut down, defueled, and the spent fuel is located into the spent fuel storage pool. This article focuses on the integrated Level 1-Level 2 PRA aspects of the analysis, from the beginning of the accident to the radiological release into the environment. The integrated Level 1-Level 2 decommissioning PRA uses event trees and fault trees that assess the accident progression until and after fuel damage. Detailed deterministic severe accident analyses are performed to support the fault tree/event tree development and to provide source term information for the various pieces of the Level 1-Level 2 model. Source terms information is collected from accidents occurring in both the reactor pressure vessel and the spent fuel pool, including simultaneous accidents. The Level 1-Level 2 PRA model evaluates the temporal and physical changes in plant conditions including consideration of major uncertainties. The goal of this article is to provide a methodology framework to perform a decommissioning Probabilistic Risk Assessment (PRA), and an application to a real case study is provided to show the use of the methodology. Results will be derived from the integrated Level 1-Level 2 decommissioning PSA event tree in terms of fuel damage frequency, large release frequency, and large early release frequency, including uncertainties.

Remote Water Level Monitoring System Based on Reflected Optical Power Detection with an Optical Coupler for Spent Fuel Pool at Nuclear Power Plant (전력상실시 광분배기 기반의 반사광 측정을 통한 사용후핵연료 저장조의 원격 수위 감시방법)

  • Kim, Sung-Man;Lee, Hoon-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.505-512
    • /
    • 2019
  • We propose a new method to monitor the water level of spent fuel pool in a nuclear power plant without electric power. We also analyze the performance and limitation of the proposed method. Our method is based on the reflected optical power at the end of optical fiber through a $1{\times}N$ optical coupler. We reveal that there is no problem to monitor the water level when using a $1{\times}8$ optical coupler. However, when a $1{\times}16$ optical coupler is used, only 15 out of 16 output ports can be used due to Rayleigh back-scattering. When a $1{\times}32$ optical coupler is used, only 25 out of 32 output ports can be used to monitor the water level.

An Operating Strategy of In-house Power Supply Systems in the Permanent Shutdown Nuclear Power Plant (원자력발전소 영구정지 시 소내전력공급계통 운영방안)

  • Lim, Hee-Taek;Lee, Kwang-Dae;Jeon, Dang-Hee;Youn, Jong-Hyun;Joo, Ik-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.337-342
    • /
    • 2018
  • Spent fuel is moved from the reactor into the spent fuel pool when nuclear power plant permanently shutdown. The sole function of a permanently defueled facility is to store spent fuel in a quiescent state. The function of electric system and loads are reduced. It is necessary to establish an operating strategy of electric system in the permanent shutdown nuclear plant. This paper reviews required loads and design criteria considering transition to permanent shutdown. An operating strategy of onsite electric system is proposed considering decommissioning strategy and stage of defueled condition.

Development of CANDU Spent Fuel Bundle Inspection System and Technology (중수로 사용후연료 건전성 검사장비 개발)

  • Kim, Yong-Chan;Lee, Jong-Hyeon;Song, Tae-Han
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Nuclear fuel can be damaged under unexpected circumstances in a nuclear reactor. Fuel rod failure can be occurred due to debris fretting or excessive hydriding or PCI (Pellet-to-clad Interaction) etc. It is important to identify the causes of such failed fuel rods for the safe operation of nuclear power plants. If a fuel rod failure occurs during the operation of a nuclear power plant, the coolant water is contaminated by leaked fission products, and in some case the power level of the plant may be lowered or the operation stopped. In addition, all spent fuels must be transferred to a dry storage. But failed fuel can not be transferred to a dry storage. Therefore, the purpose of this study is to develop a system which is capable of inspecting whether the spent fuel in the storage pool is failed or not. The sipping technology is to analyze the leakage of fission products in state of gas and liquid. The failed fuel inspection system with gamma analyzer has successfully demonstrated that the system is enough to find the failed fuel at Wolsong plant.

Risk Assessment Strategy for Decommissioning of Fukushima Daiichi Nuclear Power Station

  • Yamaguchi, Akira;Jang, Sunghyon;Hida, Kazuki;Yamanaka, Yasunori;Narumiya, Yoshiyuki
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.442-449
    • /
    • 2017
  • Risk management of the Fukushima Daiichi Nuclear Power Station decommissioning is a great challenge. In the present study, a risk management framework has been developed for the decommissioning work. It is applied to fuel assembly retrieval from Unit 3 spent fuel pool. Whole retrieval work is divided into three phases: preparation, retrieval, and transportation and storage. First of all, the end point has been established and the success path has been developed. Then, possible threats, which are internal/external and technical/societal/management, are identified and selected. "What can go wrong?" is a question about the failure scenario. The likelihoods and consequences for each scenario are roughly estimated. The whole decommissioning project will continue for several decades, i.e., long-term perspective is important. What should be emphasized is that we do not always have enough knowledge and experience of this kind. It is expected that the decommissioning can make steady and good progress in support of the proposed risk management framework. Thus, risk assessment and management are required, and the process needs to be updated in accordance with the most recent information and knowledge on the decommissioning works.

Evaluation of Radiation Effect on Damage to Nuclear Fuel of Spent Fuel Transport CASK due to Sabotage Attack (사보타주 공격으로 인한 사용후핵연료 운반용기 격납 실패시 핵연료 손상에 따른 방사선 영향 평가)

  • Ki Ho Park;Jong Sung Kim;Gun il Cha;Chang Je Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • The purpose of this study is to evaluate the radiation effect on damage when the external shield of the spent nuclear fuel transport cask is damaged due to impact as the cause of an unexpected accident. The neutron and gamma-ray intensities and spectra are calculated using the ORIGEN-Arp module in the SCALE 6.2.4 code package(1) and then using MCNP6.2(2) code calculate the dose rate. In order to evaluate the radiation dose according to the size of damage caused by external impact, various sized holes of 0.3~13.7% are assumed in the outer shield of the cask to evaluate the sensitivity to the dose. In the case of radiation source leakage, damage to the nuclear fuel assembly is assumed to be up to 6% based on overseas test cases. When only the outer shield is damaged, the maximum surface dose is calculated as 3.12E+03 mSv/hr. However, if the radiation source is leaked due to damage to the nuclear fuel assembly, it becomes 7.00E+05 mSv/hr which is about 200 times greater than the former case.

Behavour of Hold-down Springs in Kori Nuclear fuels

  • Chun, Yong-Bum;Park, Kwang-June
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.674-679
    • /
    • 1995
  • The hold-down spring forces of Kori nuclear fuels were measured for seven fuel assemblies having 1 to 4 cycles of irradiation histories in the Kori Unit-1 and -2 reactor. The fuel assemblies examined had burnup from 17 to 38 GWD/MTU and the examination was conducted in KAERI PIEF spent fuel storage pool with the newly developed underwater hold-down suing force measuring device. The measurement was made within the elastic deformation ranges and the trends of hold-down spring force relaxation behavour were examined.

  • PDF