• Title/Summary/Keyword: Spent catalyst

Search Result 88, Processing Time 0.077 seconds

Recovery of Molybdenum from the Desulfurizing Spent Catalyst (석유 탈황 폐촉매로부터 몰리브덴의 회수에 관한 연구)

  • 김종화;서명교;양종규;김준수
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.9-15
    • /
    • 1998
  • Recovery af molybdenum in spent desulfuriring catalyst of petrochemical industries was studied from MfGnatc solulion which is a resultant of firstly remvercd vanadium by wet processes. In order to separate and recover molybdenum from upper mentioned rafinatz solution containing several mctal ions, such as molybdenum (1,100 ppm), vanadium (150 ppm), aluminium (19 ppm), and nickel (33 ppm), either adsorption technique by chelate resin or solvent extr~ction by tertiary amine as extractant was applied. In case of adsorption method, palyamine type chelate resin showed the highest selectivily far molybdenum ion up lo 60 ddm' of ancentration aftcr eluting with 3.0 rnolld~n' of NH,OH. On the othcr hand. molybdenum ion wa cffectlvely cxtractcd in Ule whole ranges of equilibrilrm pR by solvent extraction method with 10 ~01%-alamine 336 which was pretreated with 2N-HCI

  • PDF

Analysis of Resource and GHG Reduction by Recycling Palladium in Plated Spent Catalyst Solution (도금폐촉매액내 팔라듐 재자원화에 따른 자원 및 온실가스 감축량 분석)

  • Shin, Ka-Young;Lee, Seong-You;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.47-54
    • /
    • 2021
  • Palladium present in colloidal-type plated spent catalyst solution that is used in electroless plating process has not been recovered but discharged as wastewater so far. Recyclig of paladium in colloidal-type plated spent catalyst solution is achieved with this study. This study presents the estimation of resource consumption and GHG emissions during the recycling and disposal of palladium in the plated spent catalyst solution using life cycle assessment. The reduction of resources and GHG are also estimated. Based on the palladium amount of 1 kg during disposal, the GHG emission amount was estimated to be 9.67E+03 kgCO2eq., and the amount of resource consumption was 3.94E+01 kgSb-eq. However, GHG emission was 1.96E+03 kgCO2eq., and the amount of resource consumption was 1.54E+01 kgSb-eq. during recycling. Considering the major substances affecting GHG emissions and amount of resource consumption, CO2 was found to significantly affect GHG emissions, accounting for 91.42% in disposal and 98.37% in recycling. The major substance affecting the amount of resource consumption was hard coal, which accounted for 40.63% in disposal and 60.73% in recycling. Upon recycling 1 kg palladium, 8,967.17 kgCO2eq. of greenhouse gas emission was reduced, while the resource consumption was reduced to 10.10 kg Sb-eq. In addition, the direct palladium resource reduction rate due to palladium recycling was 50%.

A Study on the Preparation of Oil Hydrogenation Catalysts Using Nickel Extracted from the Spent Catalysts (폐촉매로부터의 니켈 추출 및 이를 이용한 유지경화용 수소화 촉매의 제조)

  • Kim, Tae-Jin;Cha, Ik-Soo;Lee, Hee-Cheol;Ahn, Wha-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.925-934
    • /
    • 1994
  • Nickel recovered from the spent oil-hydrogenation catalysts was used in hydrogenation catalyst preparation. The spent catalyst contains approximately 21.8% Ni, 0.7% Mg, and small quantities of Al, Fe, and Zn. Nickel recovery was obtained by inorganic acid digestion in the order of HCI>$NHO_3$>$H_2SO_4$. For $HNO_3$, 3hour extraction with 3N solution was satisfactory. In the PH range of 6.5~9.0, Ni recovery was higher, but metallic impurities were found to be coprecipitated. The PH in the range of 7.0~9.0 seems to be the optimum condition for separation to obtain acceptable Ni precipitates without the decrease of purity. The catalysts prepared with reclaimed nickel by wet reduction methods showed catalytic activities close to those prepared using reagent nickel in the oil hydrogenation reaction. The surface areas of the support do not seem to affect the catalytic activity.

  • PDF

Recovery of Valuable Metals from the Desulfurizing Spent Catalyst Used in Domestic Petrochemical Industry (국내 석유공장의 탈황 폐촉매로부터 유가금속의 회수에 관한 연구)

  • 김종화;양종규
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.2-9
    • /
    • 1995
  • The rccoverg and separation pracess of nikcl, vanadium and molybdenum from spent dcsulfilrizing catalyst ofpetrochemical rndustries was studied. Tnis process was canied out wet process which is consist of roasting, ammonialeaching and solve111 exDaction techniqcs. The metal ions of NI, V and Mo as vduable compollents were treated byroasting them a1 low lernperatuc, 400$^{\circ}$C in first dep, and then dlssah'ed nu1 at 80$^{\circ}$C wlth ammonium cabonate mlulion.Aftcr cooling them a1 room tempertaure, vanadium wa rccavered from mathcr iiquur in thc f n m of precipitate, sodiumvanadales The Secand slep, roasting the catalyst which is added sodium carbonate ul IOOO"C, was employed. Leachingwith distilled ~ a l e rga ve a iwo phase resultant, solutio~c~a ntaning Ni, V and Mo and solid residue containing sibca,alurmniu~n and iron. A solvcnt exlclction technique uslng vvriuus extractanls, MSP-8, TOIUC, LIX64Pi was eflecnve farthc extraclion and scparation ol thrcc mcfals from thc ammonical 11qou1 thc ammonical 11qou1.

  • PDF

Catalytic Oxidation of Aromatic Compounds over Spent Ni-Mo and Spent Co-Mo based Catalysts: Effect of Physico-chemical Pretreatments (폐 Ni-Mo 및 폐 Co-Mo계 촉매상에서 방향족 화합물의 촉매산화: 물리화학적 전처리 효과)

  • Shim, Wang Geun;Kang, Ung Il;Kim, Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Transition metal based spent catalysts (Ni-Mo and Co-Mo), which were scrapped from the petrochemical industry, were reused for the removal processes of volatile organic compounds (VOCs). Especially the optimum regeneration procedures were determined using the removal efficiency of VOCs. In this work, the spent Ni-Mo and spent Co-Mo catalysts were pretreated with different physic-chemical treatment procedure: 1) acid aqueous solution, 2) alkali solution, 3) chemical agent and 4) steam. The various characterization methods of spent and its regenerated catalysts were performed using nitrogen adsorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS). It was found that all spent catalysts were found to be potentially applicable catalysts for catalytic oxidation of benzene. The experimental results also indicated that among the employed physico-chemical pretreatment methods, the oxalic acid aqueous (0.1 N, $C_2H_2O_4$) pretreatment appeared to be the most efficient in increasing the catalytic activity, although the catalytic activity of spent Ni-Mo and spent Co-Mo catalysts in the oxidation of benzene were greatly dependent on the pretreatment conditions. The pretreated spent catalysts at optimum condition could be also applied for removing other aromatic compounds (Toluene/Xylene).

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin (SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Chul-Joo;Chung, Kueong-Woo;Jeon, Ho-Seok;Yoon, Do-Young;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.38-47
    • /
    • 2020
  • In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was shown at pH 8.5. Desorption of W was hardly achieved in strongly acidic solutions, and desorption of V was well performed in both strongly acidic and strongly basic solutions.

Chemical Active Liquid Membranes in Inorganic Supports for Metal Ion Separations

  • Yi, Jongheop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.8-11
    • /
    • 1994
  • Disposal of hazardous ions in the aqueous streams is a significant industrial waste problem.. Waste streams from electronics, electroplating, and photographic industries contain metal ions such as copper, nickel, zinc, chromium(IV), cadmium, aluminum, silver, and gold, amongst others in various aqueous solutions such as sulfates, chlorides, fluorocarbons, and cyanides. Typical plating solutions having similar compositions are listed in Table 1. Spent process streams in catalyst manufacturing facilities also contain precious metals such as Ag, Pt, and Pd. Developing an effective recovery process of these metal ions for reuse is important.

  • PDF