• Title/Summary/Keyword: Spent Mushroom

Search Result 128, Processing Time 0.034 seconds

Isolation and Characterization of Mannanase-Producing Bacillus amyloliquefaciens YJ17 from Spent Mushroom (Flammulina velutipes) Substrates

  • Kim, Hye Soo;Kim, Chul Hwan;Kwon, Hyun Sook;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • The mannanase-producing bacteria, designated YJ17, was isolated from spent mushroom (Flammulina velutipes) substrates. The isolate YJ17 was a facultative anaerobic and was grown at temperatures ranging from $20^{\circ}C$ to $50^{\circ}C$ with an optimal temperature of $40^{\circ}C$. The DNA G+C content of the YJ17 was 44 mol%. The major fatty acids were anteiso-15:0 (38.9%), 17:0 (7.6%), and iso-15:0 (36.5%). The 16S rRNA gene sequence similarity between the isolate YJ17 and other Bacillus strains was from 98% to 99%. In the phylogenetic analysis based on these sequences, the isolate YJ17 and Bacillus amyloliquefaciens clustered within a group together and separated from other species of Bacillus. Based on the physiological and molecular properties, the isolate YJ17 was classified within the genus Bacillus as B. amyloliquefaciens YJ17. The optimal pH and temperature for mannanase activity of B. amyloliquefaciens YJ17 were pH 7.0 and $50^{\circ}C$, respectively.

Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

  • Lim, Seon-Hwa;Lee, Yun-Hae;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.214-220
    • /
    • 2013
  • This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at $4^{\circ}C$ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization.

Effect of spent mushroom substrates on Phythopthora Blight disease and growth promotion of pepper (버섯 수확후배지의 고추 생육촉진 및 역병 억제 효과)

  • Kwak, A-Min;Kang, Dae Sun;Lee, Sang-Yeop;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2015
  • Water extracts from spent mushroom substrate (SMSE)of edible mushrooms, Pleurotus eryngii, Hericium erinaceus and Lentinula edodes promoted growth of pepper seedling. Mycellial growth rate of Phythopthora capsici and Fusarium oxysporum was dramatically inhibited by 100% and 70% on PDA added with SMSE of H. erinaceus. SMSEs from H. erinaceus, P. eryngii, and L. edodes effectively reduced the disease severity of Phytophthora blight of pepper caused by Phytophthora capsici to 75%, 10% and 35%, respectively. These results suggested that SMSE from the mushrooms have dual effects that suppress phythopthora blight disease and promote plant growth of pepper.

Yield characteristics of Pleurotus ostreatus according to the use of spent mushroom substrate with high nitrogen content (질소원이 증진된 수확후배지를 이용한 느타리버섯 수량 특성)

  • Baek, Il-Sun;Kim, Jeong-Han;Lee, Yong-Seon;Shin, Bok-Eum;Lee, Yun-Hae;Lee, Young-Soon
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.257-262
    • /
    • 2018
  • The aim of this study was to re-use spent mushroom substrate (SMS) with increased total nitrogen (T-N) and amino acid content and reduce the amount of cottonseed meal used as nutrient supplement in Pleurotus ostreatus cultivation. Bacteria used for improvement of the T-N content were GM20-4(Bacillus sp.) and Rhodobacter sphaeroides (RS). GM20-4 was isolated from the SMS of P. ostreatus and RS was obtained from Gwangjusi agricultural technology center. SMS in T1, T2, and T3 was reused as substrate after drying and the T-N content of dried SMS (D-SMS) was increased by 0.34% by treatment with the bacteria. T1 with 8% D-SMS and T2 with 18% D-SMS had higher rates of primordia formation compared with T3 and the control. The biological efficiency of the control and of treatment with 8%, 18%, and 26% D-SMS was 110%, 114%, 112%, and 79%, respectively. Considering the economic cost, yield, and biological efficiency, T2 with 18% D-SMS as the culture substrate for P. ostreatus was shown to be the most effective for cultivation.

Comparison of the saccharide content of spent mushroom (Pleurotus ostreatus, Pleurotus eryngii, and Flammulina velutipes) substrates under various pretreatment conditions (전처리 방법에 따른 느타리, 큰느타리 및 팽이버섯 수확후 배지의 당함량 비교분석)

  • Kim, Jeong-Han;Lee, Yun-Hae;Chi, Jeong-Hyun;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.14 no.2
    • /
    • pp.70-74
    • /
    • 2016
  • A new method to utilize spent mushroom substrates (SMS) for ethanol production was investigated. Analysis of the chemical properties of SMS revealed that they were decomposed by the mushrooms during cultivation. In particular, the free sugar content in SMS was reduced to half of that in mushrooms. Of the tested SMS, the Pleurotus eryngii SMS was determined to be suitable for saccharification. Upon pretreatment with a 1% alkaline solution, Pleurotus eryngii SMS achieved 80.7% of its maximum saccharification ratio. The optimum pretreatment conditions for enzyme saccharification were 1% NaOH solution at $120^{\circ}$ for 60 min. Further studies are required to determine ethanol production using Pleurotus eryngii SMS.

The characteristics of fungal-mycelium-based composite materials using spent mushroom substrates of Flammulina velutipes (팽이버섯 수확후배지를 이용한 곰팡이 균사체 기반 복합소재의 특성)

  • Gi-Hong An;Du-Ho Choi;Jae-Gu Han;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.185-189
    • /
    • 2023
  • This study was conducted to develop a renewable and sustainable bio-material to replace polystyrene (EPS) in fungal-mycelium-based composite using agricultural by-products. Four mushrooms (Ganoderma lucidum, Fomitella fraxinea, Phellinus linteus, and Schizophyllum commune) were cultured in an oak sawdust plus rice bran substrate to select the mushroom with the best growth. The mycelia of G. lucidum showed the best growth. To investigate the optimal mixing ratio with spent mushroom substrate (SM) and oak sawdust (OS), samples were prepared by mixing SM and OS at ratios of 50%:50%, 60%:40%, and 80%:20% (w/w). Each substrate was then inoculated with G. lucidum. G. lucidum showed the best mycelial growth of 140.0 mm in the substrate with SM and OS mixed at a 60%:40% ratio. It was also found that the substrate with SM and OS mixed at a 60%:40% ratio had the best handling properties. The compressive strength of mycelial materials inoculated with G. lucidum was in the range of 300-302 kgf mm-1, and the materials were four times stronger than polystyrene materials. These results indicate that substrates comprising spent mushroom substrate mixed with oak sawdust can be successfully upcycled to mycelium-based composite materials using G. lucidum. This represents a sustainable approach.

Physico-chemical properties of livestock manure compost using spent oyster mushroom (Pleurotus ostreatus) substrate (느타리 수확후배지를 이용한 가축분퇴비의 이화학적 특성)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.118-125
    • /
    • 2023
  • We conducted an on-site application study at the livestock cooperative fertilizer plant to compare the composting period, temperature change, moisture content, and chemical properties between livestock manure compost using sawdust as a moisture regulator with those using spent oyster mushroom substrate. The composting period, moisture content, and fertilizer composition of compost containing spent oyster mushroom substrate did not differ from that of conventional compost mixed with sawdust after the first and second fermentation and post-maturation stages, it was suitable as a material for manufacturing livestock manure compost. The spent oyster mushroom substrate also lower the production cost of livestock manure compost by replacing the more expensive sawdust. The developed technology is expected to contribute towards the utilization of by-products of the oyster mushroom harvest while simultaneously producing high quality livestock manure compost.

Isolation and Characterization of Surfactin-producing Bacillus amyloliquefaciens YJ07 from Spent Mushroom (Pleurotus eryngii) Substrates (새송이버섯 수확 후 배지로부터 surfactin 생성 Bacillus amyloliquefaciens YJ07의 분리 및 특성)

  • Shin, Pyung Gyun;Yoo, Young Bok;Cho, Yong Un;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.180-185
    • /
    • 2011
  • Spent mushroom substrates (SMS) is a by-product remaining after a crop of mushrooms. About four surfactin-producing strains were isolated from SMS (Pleurotus eryngii). Among of them, one isolate, which designated to YJ07, potentially showed the antifungal activity against Aspergillus flavus and Aspergillus ochraceous producing mycotoxin on PDA medium. The biochemical characteristics of the strain YJ07 was similar with Bacillus subtilis and Bacillus amyloliquefaciens by Bacillus ID kit and VITEK 2 system. Comparative 16S rDNA gene sequence analysis of the strain YJ07 also showed that the strain YJ07 was most closely related to Bacillus amyloliquefaciens with sequence similarity of 99.5%. On the basis of their biochemical characteristics and phylogenetic distinctiveness, the strain YJ07 was classified within the genus Bacillus as Bacillus amyloliquefaciens YJ07. The antifungal compound from B. amyloliquefaciens YJ07 was similar to lipopeptide surfactin from Bacillus subtilis by TLC and HPLC analysis.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.