DOI QR코드

DOI QR Code

The characteristics of fungal-mycelium-based composite materials using spent mushroom substrates of Flammulina velutipes

팽이버섯 수확후배지를 이용한 곰팡이 균사체 기반 복합소재의 특성

  • Gi-Hong An (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Du-Ho Choi (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jae-Gu Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kang-Hyo Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 최두호 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이강효 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2023.08.25
  • Accepted : 2023.09.17
  • Published : 2023.09.30

Abstract

This study was conducted to develop a renewable and sustainable bio-material to replace polystyrene (EPS) in fungal-mycelium-based composite using agricultural by-products. Four mushrooms (Ganoderma lucidum, Fomitella fraxinea, Phellinus linteus, and Schizophyllum commune) were cultured in an oak sawdust plus rice bran substrate to select the mushroom with the best growth. The mycelia of G. lucidum showed the best growth. To investigate the optimal mixing ratio with spent mushroom substrate (SM) and oak sawdust (OS), samples were prepared by mixing SM and OS at ratios of 50%:50%, 60%:40%, and 80%:20% (w/w). Each substrate was then inoculated with G. lucidum. G. lucidum showed the best mycelial growth of 140.0 mm in the substrate with SM and OS mixed at a 60%:40% ratio. It was also found that the substrate with SM and OS mixed at a 60%:40% ratio had the best handling properties. The compressive strength of mycelial materials inoculated with G. lucidum was in the range of 300-302 kgf mm-1, and the materials were four times stronger than polystyrene materials. These results indicate that substrates comprising spent mushroom substrate mixed with oak sawdust can be successfully upcycled to mycelium-based composite materials using G. lucidum. This represents a sustainable approach.

야생버섯 및 재배버섯들 중에서 생장이 우수한 균주를 선발하기 위하여 PDA 배지 상에서 생육이 빠른 9 균주를 선발하였다. 톱밥배지에서 균주별 균사체의 생장을 알아보기 위하여 참나무 톱밥과 미강 80% : 20% (w/w) 비율로 혼합한 배지에서 선발된 치마버섯(No. 7), 상황버섯(No. 29), 아까시재목버섯(No. 39), 영지(No. 52) 균주를 접종하여 14일간 배양한 결과, 영지(No. 52) 균주의 균사체 생장이 가장 우수한 것으로 나타났으며, 기질 건조 후 취급비율도 영지버섯 균사체를 배양한 배지에서 가장 우수하였다. 수확후배지(SM)와 참나무 톱밥(OS) 혼합비율 50% : 50% (w/w), 60% : 40% (w/w), 80% : 20% (w/w)로 배지를 제조하여 선발 균주인 영지(No. 52) 균주를 접종하여 배양한 결과, 균사체의 직경은 수확후배지(SM) : 참나무 톱밥(OS) = 60% : 40% (w/w) 혼합배지에서 균사체 생육과 취급비율이 우수한 것으로 나타났다. 영지(No. 52) 균주를 접종하여 배양한 균사체 소재 사각시편의 압축강도는 300.7 - 302.4 kgf로 스티로폼에 비하여 약 4배 정도 강도가 우수하였으나 탄력성은 없는 것으로 확인되었다. 위와 같은 결과는 버섯농가의 고민거리인 수확후배지를 활용한 균사체 복합소재 개발을 통하여 수확후배지의 새활용을 위한 높은 가능성을 확인하였으며, 향후 기초적인 자료로 활용도가 높으리라 기대된다.

Keywords

Acknowledgement

본 연구는 2023년 농촌진흥청 국립원예특작과학원 시험연구사업(과제번호 PJ015830012023)에 의하여 수행된 결과의 일부이며 이에 감사드립니다.

References

  1. Appels FVW, Dijksterhuis J, Lukasiewicz CE, Jansen KMB, Wosten HAB, Krijgsheld P. 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci Rep 8: 4703.
  2. Bae JS, Kim YI, Jung SH, Oh YG, Kwak WS. 2006. Evaluation on feed-nutritional value of spent mushroom (Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) substrates as a roughage source for ruminants. J Anim Sci Technol 48: 237-246.
  3. Ehaliotis C, Zervakis GI, Karavitis P. 2005. Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production. Sci Hortic 106: 293-308. https://doi.org/10.1016/j.scienta.2005.04.006
  4. Jones M, Bhat T, Huynh T, Kandare E, Yuen R, Wang CH, John S. 2018. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater 42: 816-825. https://doi.org/10.1002/fam.2637
  5. Kang HW. 2019. Industrial utilization of spent mushroom substrate. J Mushrooms 17: 85-92.
  6. Kim DS, Kim YW, Kim KJ, Shin HJ. 2017. Research trend and product development potential of fungal mycelium-based composite materials. Kor Soc Biotechnol Bioeng J 32: 174-178. https://doi.org/10.7841/ksbbj.2017.32.3.174
  7. Korea Rural Economic Institute. 2018. Agricultural Outlook. pp. 586-587.
  8. Ministry of Agriculture, Food and Rural Affairs. 2021. Production performance of special crops.
  9. Moon YH, Kim HS, Kim CH, Cho WG, Yoo YB, Shin PG, Cho SJ. 2015. Effect of dietary supplementation of fermented spent mushroom substrates from Pleurotus eryngii on Hanwoo steers. J Mushrooms 13: 108-113. https://doi.org/10.14480/JM.2015.13.2.108
  10. Moon YH, Shin PG, Cho SJ. 2012. Feeding value of spent mushroom (Pleurotus eryngii) substrate. J Mushroom Sci Prod 10: 236-243.
  11. Schirtt H, Vidi S, Pleissner D. 2021. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composite. J Cleaner Prod 313: 127910.
  12. Stamets P. 2001. Mycova: helping the ecosystem through mushroom cultivation. http://www.fungi.com.
  13. Vandelook S, Elsacker E, Van Wylick A, De Laet L, Peeters E. 2021. Current state and future prospects of pure mycelium materials. Fungal Biol Biotechnol 8: 20.
  14. Williams BC, McMullan JT, McCahey S. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour Technol 79: 227-230. https://doi.org/10.1016/S0960-8524(01)00073-6