• Title/Summary/Keyword: Spent Fuel Transportation and Storage

Search Result 39, Processing Time 0.019 seconds

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

A software tool for integrated risk assessment of spent fuel transportation and storage

  • Yun, Mirae;Christian, Robby;Kim, Bo Gyung;Almomani, Belal;Ham, Jaehyun;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.721-733
    • /
    • 2017
  • When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this model.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal

  • Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.255-258
    • /
    • 2022
  • Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

Development of transportation and storage device for spent nuclear fuel capsules (핫셀에서 사용후핵연료봉 장전 Capsule의 이송 및 저장장치 개발)

  • Hong D.H.;Jung J.H.;Kim K.H.;Park B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.369-370
    • /
    • 2006
  • During demonstrations of a process conditioning spent nuclear fuels, it is necessary to transport and handle Spent fuel road cuts from Post Irradiation Examination facility to Slitting device in The hot cell. the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length for the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF(Advanced spent nuclear fuel Conditioning Process Facility). In the ACPF, Once the capsule is unloaded in the ACPF, Capsule is taken out one-by-one and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed transportation and storage device for spent nuclear fuel capsules.

  • PDF

The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask (국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가)

  • Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.411-422
    • /
    • 2016
  • Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R&D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0~4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.