• Title/Summary/Keyword: Spent Fuel Transportation

Search Result 77, Processing Time 0.027 seconds

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

A software tool for integrated risk assessment of spent fuel transportation and storage

  • Yun, Mirae;Christian, Robby;Kim, Bo Gyung;Almomani, Belal;Ham, Jaehyun;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.721-733
    • /
    • 2017
  • When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this model.

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

Structural Integrity Evaluation of Spent Nuclear Fuel Assembly Under Normal Transportation Drop Conditions

  • Cho, Sang Soon;Choi, Woo Seok;Seo, Ki-Seog;Yang, Yun-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.155-156
    • /
    • 2017
  • In this study, the structural integrity of the spent nuclear fuel assemblies was evaluated by carrying out a 0.3 m drop impact analysis, one of the normal transportation conditions of the nuclear fuel assemblies. For this purpose, the spent nuclear fuel assembly was modeled in detail as beam elements, and a coupled model for impact analysis was developed by inserting the modeled nuclear fuel assemblies into a cask.

  • PDF

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

Development of transportation and storage device for spent nuclear fuel capsules (핫셀에서 사용후핵연료봉 장전 Capsule의 이송 및 저장장치 개발)

  • Hong D.H.;Jung J.H.;Kim K.H.;Park B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.369-370
    • /
    • 2006
  • During demonstrations of a process conditioning spent nuclear fuels, it is necessary to transport and handle Spent fuel road cuts from Post Irradiation Examination facility to Slitting device in The hot cell. the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length for the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF(Advanced spent nuclear fuel Conditioning Process Facility). In the ACPF, Once the capsule is unloaded in the ACPF, Capsule is taken out one-by-one and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed transportation and storage device for spent nuclear fuel capsules.

  • PDF

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF

The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask (국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가)

  • Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.411-422
    • /
    • 2016
  • Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R&D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0~4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

Rolling Test Simulation of Sea Transport of Spent Nuclear Fuel Under Normal Transport Conditions

  • JaeHoon Lim;Woo-seok Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.439-450
    • /
    • 2023
  • In this study, the impact load resulting from collision with the fuel rods of surrogate spent nuclear fuel (SNF) assemblies was measured during a rolling test based on an analysis of the data from surrogate SNF-loaded sea transportation tests. Unfortunately, during the sea transportation tests, excessive rolling motion occurred on the ship during the test, causing the assemblies to slip and collide with the canister. Hence, we designed and conducted a separate test to simulate rolling in sea transportation to determine whether such impact loads can occur under normal conditions of SNF transport, with the test conditions for the fuel assembly to slide within the basket experimentally determined. Rolling tests were conducted while varying the rolling angle and frequency to determine the angles and frequencies at which the assemblies experienced slippage. The test results show that slippage of SNF assemblies can occur at angles of approximately 14° or greater because of rolling motion, which can generate impact loads. However, this result exceeds the conditions under which a vessel can depart for coastal navigation, thus deviating from the normal conditions required for SNF transport. Consequently, it is not necessary to consider such loads when evaluating the integrity of SNFs under normal transportation conditions.