• Title/Summary/Keyword: Spent Alkaline Manganese Batteries

Search Result 6, Processing Time 0.015 seconds

Physical Treatment for Reclaiming Spent Carbon-Zinc and Alkaline $MnO_2$batteries (廢망간電池 /알칼리망간電池 資源化를 위한 物理的 處理)

  • 손정수;안종관;박경호;전호석
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.43-50
    • /
    • 2001
  • Characteristics of crushing and magnetic separation on the spent batteries, were investigated for reclaiming spent carbon-zinc and alkaline manganese dioxide batteries. Crushing of carbon zinc battery was easier than that of alkaline $MnO_2$battery using impact type crusher with rotary blades. Most of magnetic products were distributed in the range of 8 mesh size. With crushing 1 ton of spent carbon-zinc and alkaline $MnO_2$batteries respectively, magnetic separation of 8 mesh oversize particles, we can get 214 kg and 235 kg of magnetic products which is composed of 94% and 88% of Fe.

  • PDF

Studies on the Application of the Spent Alkaline Manganese Batteries Powder as an Adsorbent for Nickel Ion (폐(廢)알칼리망간전지(電池) 분말(粉末)의 니켈 이온 흡착제(吸着劑)로서의 활용(活用)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • The adsorption features of $Ni^{2+}$ onto spent alkaline manganese batteries powder have been investigated with the adsorbent dose, initial concentration of adsorbate and temperature as the experimental variables. The adsorption reaction of $Ni^{2+}$ ion followed the pseudo-second order rate model, and the adsorption rate constants($k_2$) decreased with increasing initial concentration of nickel ion. The equilibrium adsorption data were fitted to the Langmuir and Freundlich models. The Freundlich model represents the equilibrium data better than the Langmuir model in this initial adsorbate concentration range. As the temperature increased, the adsorbed amount of nickel ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results obtained along with temperatures, thermodynamic parameters such as ${\Delta}H^{\circ},\;{\Delta}G^{\circ},\;and\;{\Delta}S^{\circ}$ were calculated.

Synthesis of Functional Complex Material from Spent Alkaline Manganese Battery (폐(廢)알칼리망간전지(電池)로부터 기능성(機能性) 복합소재(複合素材) 제조(製造))

  • Kim, Tae-Hyun;Lee, Seoung-Won;Sohn, Jeong-Soo;Kang, Jin-Gu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Fundamental studies for the synthesis of Mn-Zn ferrite powder were investigated using a series of leaching and coprecipitation processes from spent alkaline manganese batteries. Zinc and Manganese dissolution rates obtained at the reaction conditions of 100g/L pulp density, 3.0M $H_2SO_4$, $60^{\circ}C$ and 200 rpm with 30 ml $H_2O_2$ as a reducing agent were more than 97.9% and 93.9% and coprecipitation of Mn-Zn ferrite powder was performed according to various reaction conditions such as temperature, time and amount of $O_2$ gas injection using the leaching solution. As a result of coprecipitation, Mn-Zn ferrite could be synthesized directly at low temperature in the reaction condition pH 12, $80^{\circ}C$, $O_2$ 1.3 L/min. and 400 rpm. The synthesized Mn-Zn ferrite powder was spherical powder of $0.143{\mu}m$ particle size and had a saturation magnetization about 80 emu/g.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Recovery of Valuable Metals from Spent Alkaline Manganese Batteries using Sulfuric Acid (폐알카리 망간전지로부터 황산을 이용한 유가금속 회수)

  • Shin, Shun-Myung;Kang, Jin-Gu;Sohn, Jeong-Soo;Yang, Dong-Hyo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.517-520
    • /
    • 2006
  • The leaching behaviors of zinc and manganese oxides of spent alkaline manganeses battery in sulfuric acid solution by using $H_{2}O_{2}$ as a reducing agent were investigated according to the concentration of $H_{2}SO_{4}$, temperature, reaction time, and the amount of $H_{2}O_{2}$. The experimental results of zinc and manganeses dissolution rates obtained without a reducing agent at 100 g/L solid/liquid ratio, 3.0 M $H_{2}SO_{4}$, $60^{\circ}C$ and 200 r.p.m. were 97.7% and 43.5%, respectively. On the other hand, zinc and manganeses dissolution rates obtained by adding 30 mL reducing agent at $60^{\circ}C$ were 99.6% and 97.1%, respectively. The addition of the reducing agent increased the leaching of manganese by two-fold compared to the absence of a reducing agent. In case of adding over 30 mL $H_{2}O_{2}$, however, the leaching rates of zinc and manganeses were independent of reducing agent amounts.

Trend on the Recycling Technologies for Spent Batteries by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shin, Shun-Myung;Joo, Sung-Ho;Kim, Soo-Kyung;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.16-25
    • /
    • 2012
  • There are several kinds of batteries such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, sodium-sulphur battery, lead acid battery, metal hydride secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents and published papers on the recycling technologies of the used battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journal articles from 1972 to 2011. Patents and journal articles were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journal articles were analyzed by the years, countries, companies, and technologies.