Synthesis of Functional Complex Material from Spent Alkaline Manganese Battery

폐(廢)알칼리망간전지(電池)로부터 기능성(機能性) 복합소재(複合素材) 제조(製造)

  • 김태현 (충남대학교 금속공학과) ;
  • 이승원 (충남대학교 금속공학과) ;
  • 손정수 (한국지질자원연구원 자원활용소재연구부) ;
  • 강진구 (한국지질자원연구원 자원활용소재연구부) ;
  • 신선명 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.02.27

Abstract

Fundamental studies for the synthesis of Mn-Zn ferrite powder were investigated using a series of leaching and coprecipitation processes from spent alkaline manganese batteries. Zinc and Manganese dissolution rates obtained at the reaction conditions of 100g/L pulp density, 3.0M $H_2SO_4$, $60^{\circ}C$ and 200 rpm with 30 ml $H_2O_2$ as a reducing agent were more than 97.9% and 93.9% and coprecipitation of Mn-Zn ferrite powder was performed according to various reaction conditions such as temperature, time and amount of $O_2$ gas injection using the leaching solution. As a result of coprecipitation, Mn-Zn ferrite could be synthesized directly at low temperature in the reaction condition pH 12, $80^{\circ}C$, $O_2$ 1.3 L/min. and 400 rpm. The synthesized Mn-Zn ferrite powder was spherical powder of $0.143{\mu}m$ particle size and had a saturation magnetization about 80 emu/g.

폐알칼리망간전지로부터 침출과 공침반응을 이용하여 Mn-Zn ferrite 분말을 제조하기 위한 기초실험을 수행하였다. 100g/L 광액 농도 3.0M $H_2SO_4$, $60^{\circ}C$ 및 교반속도 200 rpm의 조건에서 과산화수소 30ml를 첨가하여 얻어진 아연과 망간의 침출율은 각각 97.9%, 93.9% 이상이었으며, 침출용액을 가지고 반응시간, 반응온도, $O_2$ 가스량을 조절하며 공침반응을 진행하였다. 공침반응 결과 pH 12, $80^{\circ}C$, $O_2$ 1.3L/min, 교반속도 400 rpm의 조건에서 Mn-Zn ferrite를 저온 합성할 수 있었다. 합성된 Mn-Zn ferrite분말은 $0.143{\mu}m$의 구형 ferrite로서 80 emu/g의 포화자화값을 가지고 있었다.

Keywords

References

  1. 손정수 등, 1999 : "리싸이클링백서, 1.3 폐건전지 리싸이 클링", 한국자원리싸이클링학회, pp. 95-100
  2. D. B. Dreisinger, E. Peters and G. Morgan, 1990 : "The Hydrometallurgical treatment of carbon steel electric and furnace dusts by the UBC-Chaparral process", Hydrometallurty, 25, pp. 137-152 https://doi.org/10.1016/0304-386X(90)90035-Z
  3. D. Pearson, 1981 : "Recovery of zinc from metallurgical dusts and fumes", J. Macromolecular Science - Physics, pp. 153-168
  4. S. Ferlay, 2000 : "Zimaval technology for recycling of batteries and other complex zinc bearing materials", TMS, pp. 613-623
  5. Guoxi Xi, Yunqing Li and Yumin Liu, 2004 : "Preparation of manganese-zinc ferrites using spent Zn-Mn batteries", Materials letters, 58, pp. 1164-1167 https://doi.org/10.1016/j.matlet.2003.08.029
  6. M. B. J. G. Freitas, M. K. de Pietre, 2004 : "Electrochemical recycling of the zinc from spent Zn-MnO2 batteries", J. Power sources, 128, pp. 343-349 https://doi.org/10.1016/j.jpowsour.2003.09.054
  7. 이경희, 이병하, 허원도, 황우연, 1993 : "습식합성에 의한 Mn-Zn ferrite의 생성반응에 관한 연구", 한국세라믹학회지, 30(1), pp. 25-33
  8. M. Xuan, Q. Li, G. Yang, 2007 : "Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles", J. Magnetism and Magnetic Materials, 312, pp. 464-469 https://doi.org/10.1016/j.jmmm.2006.11.200
  9. K. Hirota and O. Inoue, 1987 : "Sodium-doped Mn-Zn ferrites-microstructure and properties", J. Am. Ceram. Soc. Bull, 66(12), pp. 1755-1758
  10. S. Dasgupta, J. Das, J. Eckert, I. Manna, 2006 : "Influence of environment and grain size on magnetic properties of nanocrystalline Mn-Zn ferrite", J. Magnetism and Magnetic Materials, 306, pp. 9-15 https://doi.org/10.1016/j.jmmm.2006.02.266