• Title/Summary/Keyword: Speeding enforcement systems

Search Result 6, Processing Time 0.018 seconds

Speeding Detection and Time by Time Visualization based on Vehicle Trajectory Data

  • Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.593-596
    • /
    • 2018
  • The speed of vehicles has remained a significant factor that influences the severity of accidents and traffic accident rate in many parts of the world including South Korea. This behavior where drivers drive at speeds which exceed a posted safe threshold is known as 'speeding'. Over the past twenty years, the Korean National Police Agency (NPA) has become aware of an increased frequency of drivers who are speeding. Therefore, fixed-type ASE systems [1] have been installed on hazardous road sections of many highways. These system monitor vehicle speeds using a camera. However, the use of ASE systems has changed the behavior of the drivers. Specifically, drivers reduce speed or avoid the route where the cameras are mounted. It is not practical to install cameras at every possible location. Therefore, it is challenging to thoroughly explore the location where speeding occurs. In view of these problems, the author of this paper designed and implemented a prototype visualization system in which point and color are used to show vehicle location and associated over-speed information. All of this information was used to create a comprehensive visualization application to show information about vehicle driving. In this paper, we present an approach detecting vehicles moving at speeds which exceed a threshold and visualizing the points those violations occur on a map. This was done using vehicle trajectory data collected in Daegu city. We propose steps for exploring the data collected from those sensors. The resulting mapping has two layers. The first layer contains the dynamic vehicle trajectory data. The second underlying layer contains the static road networks. This allows comparing the speed of vehicles on roads with the known maximum safe speed of those roads, and presents the results with a visualization tool. We also compared data about people who drive over threshold safe speeds on each road on days and weekends based on vehicle trajectories. Finally, our study suggests improved times and locations where law enforcement should use monitoring with speed cameras, and where they should be stricter with traffic law enforcement. We learned that people will drive over the speed limit at midnight more than 1.9 times as often when compared with rush hour traffic at 8 o'clock in the morning, and 4.5 times as often when compared with traffic at 7 o'clock in the evening. Our study can benefit the government by helping them select better locations for installation of speed cameras. This would ultimately reduce police labor in traffic speed enforcement, and also has the potential to improve traffic safety in Daegu city.

  • PDF

Analysis of Installation Effect of Section Speed Enforcement System Using ITS Collection and Operation Data (ITS 수집 및 운영 자료를 활용한 구간과속단속시스템 설치효과 분석)

  • Yoon, Young-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.302-309
    • /
    • 2021
  • The section speed enforcement system measures the starting instantaneous speed, the The section speed enforcement system measures the starting instantaneous speed, the ending instantaneous speed, and the section average speed, and imposes fines only for the portion that has been speeding the most. However, according to the Road Traffic Act, most of the systems are installed on highways, so existing research has been conducted on highway sections. In this study, it is expected that the installation of section speed enforcement systems on general national roads will be expanded according to the revision of related laws. ITS collection and operation data targeting the section speed enforcement system installed on National Road 3 Seongnam Icheon-ro was used to analyze traffic speed, standard deviation of traffic speed, and reduction in traffic accidents by dividing it into before installation, trial operation period, and after crackdown. As a result of the analysis, the traffic speed, standard deviation, and traffic accidents decreased by 13%, 25%, and 70%, respectively, after installation, confirming that the installation of the section speed enforcement system greatly contributed to the reduction of accidents.

Comparison of Section Speed Enforcement Zone and Comparison Zone on Traffic Flow Characteristics under Free-flow Conditions in Expressways (자유류 상태에서 고속도로 구간과속단속구간 및 대조구간 간의 교통류 특성 비교)

  • Shim, Jisup;Jang, Kitae;Chung, Sung Bong;Park, Shin Hyoung
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.182-191
    • /
    • 2015
  • The Korean government introduced an automated speed enforcement system (ASES), which uses traffic enforcement cameras, to counteract safety issues that are caused by speeding. As the information of the traffic enforcement camera locations is provided to the drivers via navigation systems and mobile applications in a timely manner, drivers can avoid enforcement by momentarily diminishing their speeds only near the camera locations. To prevent drivers' evasional behavior and improve the effectiveness of ASES, section control, which enforces speeding vehicles by measuring their average travel speeds over a stretch of road and checking against the speed limit, has been recently implemented. In this study, Section Speed Enforcement Zone and Comparison Zone are compared in terms of traffic stream characteristics under free flow conditions. To this end, loop detector data were obtained from the three study sites and analyzed. The study results demonstrated that drivers maintain their speeds below the speed limit over the enforcement section with a lower variance of speeds.

A Study on Effectiveness for Car-Crash Fires Prevention through a Full-length Speed Enforcement System in Highway Tunnels (고속도로 터널내 차량추돌화재사고를 방지하기 위한 구간과속단속시스템 설치에 관한 통계적 연구)

  • Lee, Young-Jae;Kim, Gab-Cheol;Park, Hyung-Joo
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.119-127
    • /
    • 2011
  • Because of most notably the increase in vehicular traffic in Korea, as measured by highway transport usage, relief is being sought by expanding the construction of highways after 1970s'. These highways have opened up over 70 % of the mountainous areas in Korea's country side which includes the construction of tunnels. Currently there are 607 tunnels installed that are being maintained and by 2015, under the next medium-term plan, Korea will build an additional 440 tunnels. In addition, the use of 1,000m double-pole tunnels is expected to increase significantly in 256 locations. There is no doubt that these tunnels will relieve traffic congestion and aid improved communications, but halfclosed underground highway tunnels in particular are required to reduce tunnel fires caused by poor vehicle maintenance, and other factors such as speeding motorists that increase the number of vehicular accidents. Double-pole tunnels in 1,000m length over require vehicle drivers to be more cautious in terms of the continuous speed limit, judged by how devastating most of car-crash fires within these tunnels can be. In order to prevent these disasters, a full-length tunnel speed enforcement system should be considered mandatorily in legal clauses.

Estimation of Traffic Safety Improvement by Applying a Traffic Control Device (교통통제장치 적용에 따른 교통안전도 향상에 관한 연구)

  • Nam Baek;Lee Chul-Gi;Lee Sang-Soo;Oh Young-Tae;Yu Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-63
    • /
    • 2006
  • Speeding is one of the major causes of traffic accidnets in urban areas. Driver feedback sign(DFS) is a traffic control device that can be used for many traffic environments including work zones, school zones, and roadways. In this paper, the effectiveness of DFS was evaluated through a field study using speed data collected from before and after study periods. In addition traffic safety improvement was also quantitatively estimated using the variance of speed data collected. Staistical test results showed that the speed difference was statistically significant, and the distribution of speed data was also shifted greatly. Therefore, it was concluded that installing the DFS in roadways might lead to unifomity of speed of traffic flow, thus, potential safety improvement might be expected.

  • PDF

Improvement and Estimation of Effect for Speed Limit Tolerance (속도위반 단속 허용범위 개선안 제시 및 효과 추정)

  • Su-hwan Jeong;Kyeung-hee Han;Min-ho Lee;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.164-181
    • /
    • 2023
  • In a low speed limit environment, the speed limit tolerance of automated traffic enforcement devices is very high, which is one of the main factors for the low compliance rate. Therefore, in this study, we aimed to the improve the speed limit tolerance and to present a new standard. The effects of the operator and user errors that can cause speeding by drivers were analyzed. Based on the results of the analysis, an improvement of the tolerance was proposed by applying an error in the enforcement device and GPS speed. In addition, long-term expected safety effects such as the accident rate and severity were estimated from the operator's perspective when improving the tolerance. As a result of the estimation, the speed limit compliance rate, accident rate, and change rate of a number of severe accidents due to speed change, and pedestrian traffic accident mortality rate were all improved in all speed limit environments. The introduction of the proposed improvement is expected to improve road safety significantly.