• Title/Summary/Keyword: Speed-torque characteristics

Search Result 734, Processing Time 0.024 seconds

Analysis of Coefficiency According to Blade rpm Change in Tidal Current Power Generation System (조류발전 시스템 내 블레이드 회전수 변화에 따른 효율 특성 분석)

  • Lee, Uk Jae;Han, Seok Jong;Bak, Da In;Jeong, Shin Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.314-319
    • /
    • 2019
  • The numerical simulation method was used to analyze the flow velocity change and mechanical coefficient characteristics of the blade in the shroud system that changes with the initial flow velocity and the blade rpm. In the analysis condition, the initial flow velocity was varied from 0.35 m/s to 1.0 m/s, and the blade rpm varied from 50 rpm to 300 rpm. Through this, the mechanical coefficient was estimated. The flow velocity changes tended to increase more than 1.8 times at the middle point compared to the inlet. When the flow velocity ratio was 0.75 m/s compared to the initial flow velocity of 0.5 m/s, the flow velocity ratio decreased. The mechanical coefficient using the torque of the blade also showed the highest coefficient at 0.5 m/s, and the trends were similar. On the other hand, the maximum coefficient was estimated to be about 20.88% in TSR 4.77 when the initial flow velocity was 0.5 m/s. The mechanical coefficient analysis of blades in this study is expected to provide the basic data for hydraulic model experimental.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

Effects of Edged Curve Angle of Rotary Blade on Entwining Spreaded Rice Straw in Paddy (볏짚 시용(施用) 답(畓)의 Rotary 경운시(耕耘時) 날의 궤적(軌跡) 진입각(進入角)이 볏짚 감김에 미치는 영향(影響))

  • Yi, Woon Young;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.103-112
    • /
    • 1986
  • This study was carried out to prevent the entwining of rice straw on rotary shaft and blade where rice straw was spreaded on paddy field as an organic source before rotary tilling. The rotary tillage was conducted in the paddy field having the soil moisture contents of 30%, 39%, 59% in dry basis and spreaded rice straw (450kg/10a) of 30cm, 45cm, 90cm length with the edged curve angles of rotary blade of $30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $55^{\circ}$ at Yuseung area. And the test were performed on the plot which has width of 30cm and 5cm length and the quantity of entwined rice straw was analized. The test results were summarized as the followings. 1. Entwining phenomenon of rice straw was decreased as the blade edged curve angle increased. The edged curve angle of rotary blade must be determind by considering the characteristics of soil cutting resistance, tilling torque and entwining phenomenon of rice straw. But according to the entwining phenomenon of rice straw only, the edged curve angle of rotary blade should be bigger than $55^{\circ}$ for design. 2. Amount of entwining rice straw was minimized when soil moisture contents was 30 percent (d. b.). It would be better that rotary tillage is performed when soil moisture contents is lower than 30 percent in dry basis. 3. Amount of entwining rice straw was minimized when the length of rice straw was 30cm with $55^{\circ}$ edged curve angle. Therefore, it would be better to chop rice straw as 30cm. 4. Entwining phenomenon of rice straw was decreased as the forward speed decreased. To decrease the entwining rice straw, rotary tillage should be done with forward fist gear (0.35m/s).

  • PDF