• Title/Summary/Keyword: Speed change

Search Result 3,178, Processing Time 0.031 seconds

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

A Case Study on the Clinical Application of Lee Silverman Voice Treatment-BIG (LSVT-BIG) Program for Occupational Performance and Motor Functions of Stroke Patients (뇌졸중 환자의 작업수행과 운동기능을 위한 Lee Silverman Voice Treatment-BIG(LSVT-BIG) 프로그램의 임상적용에 대한 사례연구)

  • Jeong, Sun-A;Hong, Deok-Gi
    • Therapeutic Science for Rehabilitation
    • /
    • v.9 no.3
    • /
    • pp.63-75
    • /
    • 2020
  • Objective : The purpose of this study was to examine the changes in work performance and motor function of stroke patients in the Lee Silverman Voice Treatment-BIG (LSVT-BIG) program and to confirm its clinical applicability. Methods : Two stroke patients underwent the LSVT-BIG program for a total of 16 sessions (60 minutes per session and, four days a week for four weeks). To assess any changes between before and after the intervention, the Canadian Occupational Performance Measurement (COPM), Berg Balance Scale (BBS), Timed Up and Go (TUG), Functional Reaching Test (FRT), Manual Function Test (MFT) were used. Differences in scores between before and after the intervention were analyzed. Results : The performance and satisfaction of occupational performance increased after the intervention in both subjects. The performance time of the TUG decreased to 0.91, 8.42 seconds for each subject, increasing the walking speed. In FRT distance change, the subject increased in both the affected side and unaffected side. The BBS score increased by 3 points in one subject and by 6 points in the other, indicating improved balance. In addition, in the MFT score, subject A showed an improvement of 1 point on the unaffected side, and subject B showed an improvement of 1 point on the unaffected side and 3 points on the affected side. Conclusion : We confirmed the applicability of the LSVT-BIG program as a new intervention technique for stroke patients. Future, complementary research on the effects of the LSVT-BIG program on stroke patients will be needed.

Study on the Drying Method of Velvet Antler using Microwave Oven (전자레인지를 이용한 녹용의 건조방법)

  • 성시흥
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.177-182
    • /
    • 2002
  • Drying process is very important for commercialization of velvet antlers. So far, artificial drying has mostly depended on experience of farmers resulting in low efficiency of drying, deterioration during drying, and contamination by dust and bacteria. Various drying techniques for high-quality production have currently been commercialized in some developed countries, and one of them is a drying technique using microwave. In this study, application of the technique using an electronic (microwave) oven for drying of velvet antler was investigated. The results of this study are as follows. 1. It was found that the drying period was significantly affected by cornification of velvet antlers. Accordingly, it can be assumed that the velvet antlers should partly be sliced to save drying period and required drying energy. 2. It was also found that the drying speed was changeable according to tempering period and even with same drying period. The tempering period should be controlled according to processing rate. 3. The results indicated that a repeated drying of 2-min drying and 3-min tempering is the most effective when a microwave oven was used. 4. The results also showed that the drying technique using microwave of electronic oven can be effectively used for drying of velvet antlers. 5. Only drying and tempering periods were examined in this study, however, ingredient change of deer antler after drying is necessary to be investigated in the future.

  • PDF

Changes in the Physicochemical Characteristics and Triglyceride Molecular Species of Corn oil during Hydrogenation (수소첨가에 따른 옥수수유의 트리글리세리드 분자종 및 이화학적 특성의 변화)

  • Kim, Hyeon-Wee;Cha, Ik-Soo;Kim, Jin-Ho;Kim, Hyun-Suck;Park, Ki-Moon;Son, Se-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-642
    • /
    • 1993
  • Changes in the physicochemical characteristics and triglyceride molecular species of corn oil under the following condition of hydrogenation; temperature $180^{\circ}C,\;H_{2}$, pressure $2.0{\pm}0.3bar$, the amount of Ni catalyst 0.048%(Ni/oil by wt.) and agitation speed 300 rpm. The rate of hydrogenation, expressed as the reduction rate of the iodine value with respect to time, is first order and high (K>0.01). When the reduction rate of the iodine value was 39.9%, hydrogenation time was 30 min, 18:1 was highest(77.06%), thereafter that was decreased and 18:0 increased. In the triglyceride composition, OLL, LLL were reduced markedly in 10 min, thereafter reduced slightly. And PLO, PLL, OLO were eliminated in first 30 min. On the other hand, POO, PLS(CN52) and OOO, SLO(CN54) were increased sharply, and then that showed little change. The melting point(MP) of hydrogenated corn oil were $27.8^{\circ}C\;and\;44.1^{\circ}C$ after 20 min and 60 min, respectively. Trans isomer content increased to 46.8% during 40 mins of hydrogenation and then decreased insignificantly. The solid fat content were linearly increased with hydrogenation time. Accordingly, it is confirmed that this condition of hydrogenation was selective, preferential elimination of polyunsaturated fatty acid went stepwise and trans isomer was formed promotedly. These results suggest that fat modification techniques can be used for practical application.

  • PDF

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

Analysis of the Flexural Vibrations for the Rotating Cantilevered Rectangular Plates (회전하는 외팔 사각판의 굽힘진동 해석)

  • 이종민;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.59-64
    • /
    • 1992
  • 터빈 블레이드와 같이 회전하는 구조물의 파단은 공진 근처에서 진동이 발 생할 때에 이에 기인하는 피로에 의하여 발생한다. 그러므로 이와 같은 파단 을 피하기 위해서는 설계 단계에서 이론적인 계산에 의하여 구조물의 고유 진동수를 결정하는 것이 상당히 중요하다. 판이 회전을 받게 되면 원심력에 의하여 판의 강성이 증가하므로 고유진동수가 회전하지 않는 판의 고유진동 수보다는 상당히 증가하게 된다. 이에 대한 연구가 국내외에서 상당수 행하 여졌지만, 연구의 대부분이 회전의 영향을 고려하지 않은 정지판(stationary plate)에 대한 것이며 뢰전을 고려한 연구는 극히 제한되어 있다. 또한 회전 의 영향을 고려한 연구의 대부분이 해석 대상을 보로서 단순화 시켰고 해법 으로는 유한요소법과 Ritz법 등을 사용하였다. 이는 블레이드가 지니고 있는 기하학적인 형상과 진동 특성이 해석적인 방법으로 해결하는 데에는 상당한 어려움이 있기 때문이다. 실제적으로는 터빈 블레이드와 같은 회전체의 진동 특성이 설치각이나 비틀림각, 판의 형상비, 회전속도 등의 변화에 의하여 영 향을 받기 때문에 보와 같은 진동 거동을 보이기보다는 판이나 셀과 같은 진동 거동을 보이므로 보다 정확한 해석을 수행하기 위해서는 해석 대상을 판이나 셀로서 취급하는 것이 타당하다. 따라서 본 연구에서는 위와 같은 이 유 때문에 해석 대상을 등방성 사각판과 직교이방성 복합재료 사각판으로 선택하였으며, 구조물의 고유진동수에 영향을 미치는 다음과 같은 인자들을 해석에 고려하였다. 1. 회전속도 (rotational speed) 2. 설치각 (setting angle) 3. 허브의 반경 (hub radius) 4. 판의 형상비 (aspect ratio) 5. 적층순서 (stacking sequence)구조물에 대한 동적실험(dynamic test)을 통하여 단기간에 동적특성을 결정하고 SDM(structure dynamic modification)이나 FRS(force response simulation)를 수행하여 임의의 좌표 공간에 대한 진동수준을 해석적으로 예측할 뿐만 아니라 구조물의 진동제어 를 위한 동적인자를 변경시킬 수 있는 정보를 제공하며 장비를 방진할 경우 신뢰성 있는 전달률을 결정할 수 있다. 실험적으로 철교, 교량이나 건물의 철골구조 및 2층 바닥 등 대,중형의 복잡한 구조물에 대항 동특성을 나타내 는 모빌리티를 결정할 경우 충격 가진 실험이 사용되는 실험장비 측면에서 나 실험을 수행하는 과정이 대체적으로 간편하다. 그러나 이 경우 대상 구조 물을 충분히 가진시킬수 있는 용량의 대형 충격기(large impact hammer)가 필요하게 된다. 이러한 동적실험은 약 길이 61m, 폭 16m의 4경간 교량에 대 하여 동적실험을 수행하여 가능성을 확인하였다. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but stron

  • PDF

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations (여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험)

  • Kwon, Kyung-Man;Choi, Byoung-Ju;Lee, Sang-Ho;Cho, Yang-Ki;Jang, Chan-Joo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.155-168
    • /
    • 2011
  • Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.