• Title/Summary/Keyword: Speed change

Search Result 3,166, Processing Time 0.036 seconds

Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network (퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계)

  • Choi, Sung-Dae;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.

The Shop Floor Control Problem in Automated Manufacturing Systems : Determination of Machining Speed with Due Date of Parts (자동생산체제의 작업장운영문제에서 부품의 납기를 고려한 가공속도 결정)

  • 노인규;박찬웅
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.293-299
    • /
    • 1996
  • The breakdown of machines lead to the lateness of parts and the change of schedules. Its treatment is very important problem in the shop floor control system. In this study, we present an algorithm minimize the lateness, earliness and change of schedule by controlling machining speed of available machines. Production time and production cost required to manufacture a piece of product are usually expressed as a unimodal convex fuction with respect to machining speed, and each has its minimal point at the minimum time speed or the minimum cost speed, and a speed range between these two speeds is called 'efficiency speed range'. Therefore, the algorithm determines the machining speed in the efficiency speed range. An example is demonstrated to explain the algorithm.

  • PDF

Speed Control of Induction Machines Using Fuzzy Algorithm with Hierarchical Structure

  • Lee, Ho-Seok;Cho, Soon-Bong;Hyun, Dong-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.101-108
    • /
    • 1996
  • A new speed controller based on the fuzzy algorithm with hierarchical structure is presented. The input variables of the controller are speed error and its derivative(change of error), where the output variable is the change of torque current command. Several comparisons were performed with conventional PI (proportional plus integral) controller and proposed controller. These controllers are applied to the laboratory model drive system with 2.2kW induction motor. Some simulation and experimental results show that the speed controller using fuzzy algorithm is more robust than the conventional PI controller.

  • PDF

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.

Machining Characteristics of Nickel-Chrome Alloy according to Changing with Ultra High-Speed RPM (초고속 RPM변화에 따른 니켈-크롬 합금의 밀링가공 특성 평가)

  • Lee, Seung-Jun;Choi, Soo-Chang;Kim, Jin-Geun;Shin, In-Dong;Lee, Deug-Woo;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • According to the high demand of hybrid components, the hybrid materials development and processing technology were increased in the industry field. Although hybrid materials have various machining technologies, the research about them has rarely been proceed. This study is to carry out results about design technology of miniaturized high-speed air spindle and machining characteristics of hybrid materials using that. We studied machining characteristics in Nickel-Chrome alloy(Ni-Cr) according to change rotating speed using miniaturized high-speed air spindle. As the following results, the change of surface shape and roughness was investigated as the processing conditions such as rotating speed of miniaturized high-speed air spindle.

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

Verification of Speed-up Mechanism of Pedestrian-level Winds Around Square Buildings by CFD

  • Hideyuki Tanaka;Qiang Lin;Yasuhiko Azegami;Yukio Tamura
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.301-314
    • /
    • 2022
  • Various studies have been conducted on pedestrian-level wind environments around buildings. With regard to the speed-up mechanism of pedestrian-level winds, there are references to downwash effect due to the vertical pressure gradient of boundary layer flow and venturi effect due to flow blocking by the building. Two factors contribute to increase or decrease of downwash effect: change in twodimensional / three-dimensional air flow pattern (Type 1) and change in downwash wind speed due to building size that does not accompany change in airflow pattern (Type 2). Previous studies have shown that downwash effect has a greater influence in increasing or decreasing the area of strong wind than venturi effect. However, these considerations are derived from the horizontal mean wind speed distribution at pedestrian level and are not the result of three-dimensional flow field around the building. Therefore, in this study, Computational Fluid Dynamics using Large Eddy Simulation were performed to verify the downwash phenomena that contributes to increase in wind speed at pedestrian level.

Assessment of the Pressure Transient Inside the Passenger Cabin of High-speed Train Using Computational Fluid Dynamics (전산유체역학을 이용한 고속철도차량 객실 내 압력변동 평가)

  • Kwon, Hyeok-Bin;Nam, Sung-Won;Kwak, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • The pressure transient inside the passenger cabin of high-speed train has been assessed using computational fluid dynamics (CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results show that the pressure change inside the new Korean high-seed train passing through a tunnel of Seoul-Busan high-speed line at the speed of 330km/h satisfied well the Korean regulation for pressure change inside a passenger cabin if the train is satisfying the train specification for airtightness required by the regulation.