• 제목/요약/키워드: Speed Regulation

검색결과 395건 처리시간 0.046초

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권1호
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.

식스 스텝 운전을 이용한 선박용 DC 전력 시스템의 직류단 전압 제어 (DC Bus Voltage Regulation With Six-Step Operation in Maritime DC Power System)

  • 윤종훈;손영광;설승기
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.263-270
    • /
    • 2021
  • Active AC/DC converters with PWM operation are utilized to regulate rectified DC bus voltage of a permanent magnet synchronous generator in the maritime DC power system. A DC bus voltage regulation strategy that exploits the six-step operation is proposed in this study. Compared with that of the PWM operation, switching loss of the converter can be significantly reduced under the six-step operation. Moreover, conduction loss can also be reduced due to the high modulation index and reduced flux-weakening current of the six-step operation. A controller is used for the proposed DC bus voltage regulation strategy to verify its validity with the simulation and experimental setup. The simulation and the experimental test results showed that the converter loss reduces to a maximum of 70% and 19%, respectively.

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

동특성해석을 위한 계통연계 풍력발전 시스템의 모델링 (Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis)

  • 추연식;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

F10/F12 분기기에서의 가드레일 변화에 따른 주행안전성 해석 (An Analysis of Running Safety according to the Guard Rail Change of F10/F12 Turnout)

  • 김성종;김태건;엄범규;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1881-1887
    • /
    • 2011
  • The speed-limit regulation on the turnout is the main cause which hinders the speed-up of conventional lines among many factors. The specification speed for the train which passes the turnout system is lower than that on the general track. In this paper, shape of guard rail of Daegu Metropolitan Transit Corporation was investigated, and the effect of the variation of guard rail length on the running safety of a vehicle was analyzed for the purpose of speed improvement on turnout using the developed analysis method.

  • PDF

Feedforward Pitch Control Using Wind Speed Estimation

  • Nam, Yoon-Su;Kim, Jeong-Gi;Paek, In-Su;Moon, Young-Hwan;Kim, Seog-Joo;Kim, Dong-Joon
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.211-217
    • /
    • 2011
  • The dynamic response of a multi-MW wind turbine to a sudden change in wind speed is usually slow, because of the slow pitch control system. This could cause a large excursion of the rotor speed and an output power over the rated. A feedforward pitch control can be applied to minimize the fluctuations of these parameters. This paper introduces the complete design steps for a feedforward pitch controller, which consist of three stages, i.e. the aerodynamic torque estimation, the 3-dimensional lookup table for the wind seed estimation, and the calculation of the feedforward pitch amount. The effectiveness of the feedforward control is verified through numerical simulations of a multi-MW wind turbine.

5GHz대역 초고속 무선랜의 주파수분배에 관한 연구 (A study on Spectrum Allocation for Very High Speed Wireless Access Network in 5GHz Band)

  • 허보진;이재욱;박덕규
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.474-479
    • /
    • 2003
  • 본 연구에서는 5㎓대역에 대한 각국의 전파 이용 현황, 주파수 및 국내외 정책동향을 분석하였으며, 각국의 초고속 무선접속 시스템에 대한 기술기준 내용과 5㎓대역의 ISM대역에 대한 주파수분배 내용을 연구하였다. 또한 초고속 무선접속시스템을 추진하기 위한 소요대역폭의 계산, 주파수 공유기법과 주파수의 효율적 이용 방안에 대한 연구를 수행하였다. 본 연구 내용을 바탕으로 5㎓초고속 무선접속시스템을 위한 주파수 확보 방안을 제시하여, 국내 주파수 정책 수립에 필요한 논리적인 근거를 마련함과 동시에 5㎓대역에 대한 주파수 분배 방안을 제시하였다.

  • PDF

SRM의 고효율 구동을 위한 PLL 제어방식 (Design of SRM according to Design Parameters)

  • 김태형;오석규;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.985-987
    • /
    • 2004
  • Switched Reluctance Motor(SRM) drive system is known to provide good torque characteristics and high efficiency drive. However, speed variation caused by higher torque ripple is one of main drawback. The Phase-Locked Loop (PLL) technique in conjunction with dynamic dwell angle control has good speed regulation characteristics. In this paper, appropriate advance angle control for high efficiency drive and PLL technique for accurate speed control is proposed. A TMS320F240 DSP is used to realize this drive system. Test results show that the system has good dynamic and precise speed control ability as well as high efficiency.

  • PDF

DSP를 이용한 SRM 드라이브의 PLL 제어방식에 관한 연구 (Researching to PLL Control-mothod of SRM Drive based on DSP)

  • 표성영;문재원;박한웅;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.189-192
    • /
    • 1999
  • The switched reluctance drive system is known to provide a good adjustable speed and torque characteristics. However, acoustic noise and higher torque ripple are drawbacks. These drawbacks show the fact that SRM drive is not operated with mmf current specified for dwell angle and input voltage. Reducing torque ripple and having precise speed control, PLL technique is adopted. The PLL system in conjunction with dynamic dwell angle control scheme has good speed regulation characteristics. A TMS320F240 based on the DSP is used to realizing this drive system. Test results show that the system has the ability to achieve good dynamic and precise speed control.

  • PDF

디지탈 서보계 설계법에 의한 유도 전동기 시스템의 속도 제어 (Speed Control of Induction Motor Systems by Design Method of Digital Servo System)

  • 김상봉;김환성;이동철;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.50-59
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital servo control method and a well-known second order differential equation as model. The basic concept of using the modeling equation stated in the above is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc, just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. Futhermore, the proposed speed control system can be treated as a single input and single output system. The effectiveness of the servo control system obtained by the above-mentioned design concept is illustrated by the experimental results in the presence of both step reference changes and load variations. It is observed from the experimental results that the steady state-error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal changes and load variations.

  • PDF