• Title/Summary/Keyword: Speed Droop

Search Result 16, Processing Time 0.023 seconds

A simulation module to practice hydraulic mechanical governors and its adjustment characteristics for stability (유압기계식 거버너의 실습용 시뮬레이션 모듈과 안정도의 조정 특성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.533-540
    • /
    • 2013
  • Prime movers in engine rooms inherently are much affected by the adjustment of their governors for the steady state and transient properties, consequently requiring that marine engineers shall be well familiar with the way to manage governor dials for normal operation. The hydro-mechanical governors basically have different control characteristics and adjustment parameters of stability from digital governors. The former include compensation mechanism using dash pot while the control algorithm of the latter is usually based on the PID action. This study is for configuring a simulation module to let trainees practice how to adjust dials for stability on hydraulic governors in the view that the practice by real governors and engines is time consuming and high cost for operation. The governor module includes the adjusting points such as speed set, speed droop, needle valve and compensation pointer with engine module of $2^{nd}$ order coupled. The results of simulation showed satisfactory responses as a training tool for the adjustment of control parameters.

Research on the Power Sharing Control and Stability of VSGs

  • Xie, Dong;Zang, Da-Jin;Gao, Peng;Wang, Jun-Jia
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.542-550
    • /
    • 2017
  • Aiming at the deficiencies of power sharing control performances when a traditional droop control is adopted for microgrid inverters, this paper proposes a microgrid inverter power sharing control strategy based on a virtual synchronous generator. This control method simulates the electromechanical transient characteristics of a synchronous generator in a power system by an ontology algorithm and the control laws of a synchronous generator by control over the speed governor and excitation regulator. As a result, that the microgrid system is able to effectively retain the stability of the voltage and frequency, and the power sharing precision of the microgrid inverter is improved. Based on an analysis of stability of a microgrid system controlled by a virtual synchronous generator, design thoughts are provided for further improvement of the power sharing precision of inverters. The simulation results shows that when the virtual synchronous generator based control strategy was adopted, the power sharing performances of microgrid inverters are improved more obviously than those using the droop control strategy.

Feasibility Study for Application of Frequency Regulation ESS in Cuba: Technological Effects on Improving Frequency Compensation (쿠바 주파수조정 ESS 운영 전략 검토: 주파수 보상 효과 분석)

  • Kim, Soo-Yeol;Lee, Seong-eun;Kim, Jin-tae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • KEPCO has installed Frequency Regulation ESS (FR ESS) of 376 MW since 2015. Frequency Regulation is ancillary service to support stabilizing system frequency, which is divided into governor free and automatic generation control. KEPCO operates FR ESS as governor free application and leads FR ESS market with capability of diverse demonstration and operation experiences. To expand FR ESS role during transient states of power system, KEPCO has extended operating time of charging and discharging. KEPCO has also changed speed droop lower than before to improve contribution on frequency compensation, and acquired much experiences of differentiating bad cells from others. Based on these technologies and know-hows, KEPCO Research Institutes received request of feasibility study and technical cooperation for overseas FR ESS business. This paper suggests the simple and practical method for making technological feasibility study of FR ESS.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

Load Following Operation Improvement by Governor Control Logic Modification of Thermal Power Plant (System Frequency Drop Prevention) (기력발전소 터빈조속기 제어로직 개선에 의한 발전기 부하추종성 향상 (계통주파수저하방지))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2006
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are necessarily preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned outage is taken into consideration because of economical power production. The paper introduces the followings; In case of system-frequency drop during long term, at 500MW thermal power plant, the generator output was drop. To clear this problem, the control logic is modified with analysis of trend and control algorithm. As a result system frequency drop is prevented during the long tenn and the electric grid operation is improved.