Shi, Canghong;Wang, Hongxia;Hu, Yi;Qian, Qing;Zhao, Hong
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2588-2609
/
2019
Speech homomorphic encryption has become one of the key components in secure speech storing in the public cloud computing. The major problem of speech homomorphic encryption is the huge data expansion of speech cipher-text. To address the issue, this paper presents a speech homomorphic encryption scheme with less data expansion, which is a probabilistic statistics and addition homomorphic cryptosystem. In the proposed scheme, the original digital speech with some random numbers selected is firstly grouped to form a series of speech matrix. Then, a proposed matrix encryption method is employed to encrypt that speech matrix. After that, mutual information in sample speech cipher-texts is reduced to limit the data expansion. Performance analysis and experimental results show that the proposed scheme is addition homomorphic, and it not only resists statistical analysis attacks but also eliminates some signal characteristics of original speech. In addition, comparing with Paillier homomorphic cryptosystem, the proposed scheme has less data expansion and lower computational complexity. Furthermore, the time consumption of the proposed scheme is almost the same on the smartphone and the PC. Thus, the proposed scheme is extremely suitable for secure speech storing in public cloud computing.
Lee Sangmin;Won Jong Ho;Park Hyung Min;Hong Sung Hwa;Kim In Young;Kim Sun I.
대한의용생체공학회:의공학회지
/
제26권3호
/
pp.177-184
/
2005
In this paper, we proposed a new hearing aid algorithm to improve SNR(signal to noise ratio) of noisy speech signal and speech perception. The proposed hearing aid algorithm is a multi-band loudness compensation based independent component analysis (ICA). The proposed algorithm was compared with a conventional spectral subtraction algorithm on behind-the-ear type hearing aid. The proposed algorithm successfully separated a target speech signal from background noise and from a mixture of the speech signals. The algorithms were compared each other by means of SNR. The average improvement of SNR by ICA based algorithm was 16.64dB, whereas spectral subtraction algorithm was 8.67dB. From the clinical tests, we concluded that our proposed algorithm would help hearing aid user to hear clearly a target speech in noisy conditions.
This paper is a study on the Endpoint Detection for Korean Speech Recognition. In speech signal process, analysis parameter was classification from Zero Crossing Rate(Z.C.R), Log Energy(L.E), Energy in the predictive error(Ep) and fundamental Korean Speech digits, /영/-/구/ are selected as date for the Recognition of Speech. The main goal of this paper is to develop techniques and system for Speech input ot machine. In order to detect the Endpoint, this paper makes choice of Log Energy(L.E) from various parameters analysis, and the Log Energy is very effective parameter in classifying speech and nonspeech segments. The error rate of 1.43% result from the analysis.
The current study assessed the utility of acoustic analyses the most commonly used in routine clinical voice assessment including perturbation, nonlinear dynamic analysis, and Spectral/Cepstrum analysis based on signal typing of dysphonic voices and investigated their applicability of clinical acoustic analysis methods. A total of 70 dysphonic voice samples were classified with signal typing using narrowband spectrogram. Traditional parameters of %jitter, %shimmer, and signal-to-noise ratio were calculated for the signals using TF32 and correlation dimension(D2) of nonlinear dynamic parameter and spectral/cepstral measures including mean CPP, CPP_sd, CPPf0, CPPf0_sd, L/H ratio, and L/H ratio_sd were also calculated with ADSV(Analysis of Dysphonia in Speech and VoiceTM). Auditory perceptual analysis was performed by two blinded speech-language pathologists with GRBAS. The results showed that nearly periodic Type 1 signals were all functional dysphonia and Type 4 signals were comprised of neurogenic and organic voice disorders. Only Type 1 voice signals were reliable for perturbation analysis in this study. Significant signal typing-related differences were found in all acoustic and auditory-perceptual measures. SNR, CPP, L/H ratio values for Type 4 were significantly lower than those of other voice signals and significant higher %jitter, %shimmer were observed in Type 4 voice signals(p<.001). Additionally, with increase of signal type, D2 values significantly increased and more complex and nonlinear patterns were represented. Nevertheless, voice signals with highly noise component associated with breathiness were not able to obtain D2. In particular, CPP, was highly sensitive with voice quality 'G', 'R', 'B' than any other acoustic measures. Thus, Spectral and cepstral analyses may be applied for more severe dysphonic voices such as Type 4 signals and CPP can be more accurate and predictive acoustic marker in measuring voice quality and severity in dysphonia.
음성 신호는 자음 신호와 모음 신호의 결합으로 이루어져 있지만 그 특성상 자음보다는 모음 신호의 지속시간이 길다. 따라서 전체적으로 음성 신호 블록들 사이의 상관관계가 상당히 크다고 간주할 수 있다. 하지만 같은 음성 신호 내에서도 주파수 대역별로 그 상관관계가 다르게 나타난다. 음성신호를 128개의 데이터를 갖는 블록들로 나눈 후 각 블록의 FFT를 구한다. 여러 주파수 대역별 FFT 값으로 부터 이웃 블록들과의 공분산 행렬을 구하고 이 행렬로부터 고유값을 계산해 낸다. 이중 첫 번 째 고유값은 주성분과 관련이 있다. 다양한 주파수 대역별로 주성분을 구한 후 이 주성분의 값들이 대역별로 어떻게 나타나는지 그 분포를 알아보고 어떤 대역의 공분산 행렬의 고유값을 선택해야 더 안정적인 결과를 얻을 수 있을지 분석한다.
In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권1호
/
pp.1-6
/
2005
In this paper, we propose an emotion recognition method using the facial images and speech signals. Six basic emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Facia] expression recognition is performed by using the multi-resolution analysis based on the discrete wavelet. Here, we obtain the feature vectors through the ICA(Independent Component Analysis). On the other hand, the emotion recognition from the speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and the final recognition is obtained from the multi-decision making scheme. After merging the facial and speech emotion recognition results, we obtained better performance than previous ones.
In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.
Huang, Jianjun;Zhang, Xiongwei;Zhang, Yafei;Zou, Xia;Zeng, Li
ETRI Journal
/
제36권1호
/
pp.167-170
/
2014
In this letter, we propose an unsupervised framework for speech noise reduction based on the recent development of low-rank and sparse matrix decomposition. The proposed framework directly separates the speech signal from noisy speech by decomposing the noisy speech spectrogram into three submatrices: the noise structure matrix, the clean speech structure matrix, and the residual noise matrix. Evaluations on the Noisex-92 dataset show that the proposed method achieves a signal-to-distortion ratio approximately 2.48 dB and 3.23 dB higher than that of the robust principal component analysis method and the non-negative matrix factorization method, respectively, when the input SNR is -5 dB.
We propose a new method to apply shape analysis techniques to a computational auditory scene analysis (CASA)-based speech separation system. The conventional CASA-based speech separation system extracts speech signals from a mixture of speech and noise signals. In the proposed method, we complement the missing speech signals by applying the shape analysis techniques such as labelling and distance function. In the speech separation experiment, the proposed method improves signal-to-noise ratio by 6.6 dB. When the proposed method is used as a front-end of speech recognizers, it improves recognition accuracy by 22% for the speech-shaped stationary noise condition and 7.2% for the two-talker noise condition at the target-to-masker ratio than or equal to -3 dB.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.