International journal of advanced smart convergence
/
v.9
no.1
/
pp.193-201
/
2020
The main objective of this study is to investigate the impact of additional modalities on the performance of emotion recognition using speech, facial expression and physiological measurements. In order to compare different approaches, we designed a feature-based recognition system as a benchmark which carries out linear supervised classification followed by the leave-one-out cross-validation. For the classification of four emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, we experienced extremely high disparity between single class recognition rates, while we could not observe a best performing single modality in our experiment. Based on these observations, we developed a novel fusion method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition compared to the best unimodal results.
Music is now digitally produced and distributed via internet and we face a huge amount of music day by day. A music summarization technology has been studied in order to help people concentrate on the most impressive section of the song andone can skim a song as listening the climax(chorus, refrain) only. Recent studies try to find the climax section using various methods such as finding diagonal line segment or kernel based segmentation. All these methods fail to capture the inherent structure of music due to polyphonic and noisy nature of music. In this paper, after applying moving average filter to time domain of MFCC/chroma feature, we achieved a remarkable result to capture the music structure.
Transactions of the Korean Society of Mechanical Engineers A
/
v.27
no.11
/
pp.1864-1872
/
2003
Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.
Joung Eui-jun;Chang Sung-wook;Yang Sung-il;Kwon Y.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.33-36
/
2001
본 논문에서는 기존의 음성인식에서 사용하는 특징벡터인 MFCC(Mel-Frequency Cepstral Cefficients)를 대신하여 웨이블렛 변환을 이용한 새로운 특징벡터를 추출하는 방법을 제안한다. 새 특징벡터로는 MRA(Multi-Resolution Analysis)를 이용하여 구성하였다. 웨이블렛 변환을 이용한 새로운 특징벡터의 추출 목적은 시간축과 주파수축에서의 더 좋은 해상도를 가지는 성질을 이용하는 것이다. 실험결과에서 웨이블렛 변환을 이용한 새로운 특징벡터를 이용한 인식이 기존의 방식보다 더 좋은 인식률을 보이고 있음을 확인하였다.
English segments adopted into Korean can be divided into three types: Some English segments /$m, {\;}n, {\;}{\eta}, {\;}p^h, {\;}t^h, {\;}k^h$/ are adopted into the original sound [$m, {\;}n, {\;}{\eta}, {\;}p^h, {\;}t^h, {\;}k^h$] in Korean. Other segments /b, d, g/ appear in the voiceless stop form [p, t, k]. Generative Phonology explains the presence of the above English segments in Korean but it cannot explain why the English segments /$f, {\;}v, {\;}{\Theta}, {\;}{\breve{z}}, {\;}{\breve{c}}, {\;}{\breve{j}}$/ disappear during the adopting process. I present a set of universal constraints from the Optimality Theory proposed by Prince and Smolensky(l993) and I show how English segments differently adopted into Korean can be explained by these universal constraints such as Faith(feature). N oAffricateStop, Faith(nasal), NoNasalStop, Faith(voice), NoVoicedStop and the interaction of these constraints. I conclude that this Optimality Theory provides insights that better capture the nature of the phonological phenomena of English segments in Korean.
최근 음운론에서 lateral 자질이 자질수형도에서 어디에 위치하는가에 대해 두 가지 접근이 있어 왔다. Levin(1988)은 lateral이 coronal에만 나타나는 제약에 기초해서, lateral 자질이 coronal 마디의 의존자질이라고 주장한다. 이에 반해 Rice & Avery(1991), 그리고 Shaw(1991)는 lateral 자질이 자질수형도의 위쪽에 위치한다고 주장한다. 이 두 이론을 비교하기 위해 본 논문에서는 다음과 같은 내용의 음운론적인 요소들과 음성학적인 요소들을 고려한다. 첫째, 음성학에서 lateral의 기능은 lateral이 일반적으로 수형도 위쪽에 위치하는 것으로 간주되는 조음방법 자질이라는 것을 시사한다. 둘째, Papuan 언어군에서 보고된 Velar lateral의 존재는 lateral이 coronal에만 나타난다는 제약을 무효화하면서 Levin이론의 전제를 의심스럽게 한다. 셋째, 몇 가지 다른 유형의 동화 현상에 대한 논의는 동화현상이 lateral이 수형도의 위쪽에 위치하는 이론에서 더 잘 설명된다는 것을 보여 준다. 마지막으로 Chumash와 Tahltan의 coronal harmony에서 나타나는 lateral의 transparency와 Cambodian과 Javanese에서 나타나는 OCP효과 따위도 lateral이 조음위치 마디의 의존 자질인 이론에서는 설명될 수 없는 underspecified lateral의 증거를 제시한다. 이와 같은 논의에 기초해서 본 논문의 결과는 lateral이 수형도 위쪽에 위치한다는 주장이 옳음을 보여준다.
본 논문에서는 음성의 모델을 이용하여 확률적인 기반으로 잡음의 마스킹 정도를 측정하는 방법에 대해서 제시한다. 잡음의 마스킹 정도를 측정하는 기준으로서 '잡음 마스킹 확률'을 구하는 방법에 대해서 설명하고 이의 특성에 대해서 알아본다. 그리고 잡음에 대한 '잡음 마스킹 확률'을 이용하여 잡음 환경에서의 음성인식 특징벡터의 성능 향상에 대해 적용해 보았다. 제안된 방법은 ETSI 에서 음성인식 표준실험으로 제시한 Aurora2 데이터베이스 상에서 실험해 보았다. 그 결과 기존의 알고리즘에 비해 16.58%의 성능 향상을 이루어 낼 수 있었다.
This paper describes the implementation of recognition of speaker - dependent Korean spoken continuous digits. The recognition system can be divided into two parts, acoustic - phonetic processor and lexical decoder. Acoustic - phonetic processor calculates the feature vectors from input speech signal and the performs frame labelling and phone labelling. Frame labelling is performed by Bayesian classification method and phone labelling is performed using labelled frame and posteriori probability. The lexical decoder accepts segments (phones) from acoustic - phonetic processor and decodes its lexical structure through phone network which is constructed from phonetic representation of ten digits. The experiment carried out with two sets of 4continuous digits, each set is composed of 35 patterns. An evaluation of the system yielded a pattern accuracy of about 80 percent resulting from a word accuracy of about 95 percent.
As the Internet becomes prevalent in our lives, harmful contents, such as phornographic videos, have been increasing on the Internet, which has become a very serious problem. To prevent such an event, there are many filtering systems mainly based on the keyword-or image-based methods. The main purpose of this paper is to devise a system that classifies pornographic videos based on the audio information. We use the mel-cepstrum modulation energy (MCME) which is a modulation energy calculated on the time trajectory of the mel-frequency cepstral coefficients (MFCC) as well as the MFCC as the feature vector. For the classifier, we use the well-known Gaussian mixture model (GMM). The experimental results showed that the proposed system effectively classified 98.3% of pornographic data and 99.8% of non-pornographic data. We expect the proposed method can be applied to the more accurate classification system which uses both video and audio information.
Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
ETRI Journal
/
v.40
no.5
/
pp.643-652
/
2018
Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.