Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.221-224
/
1995
In speech signal processing, it is necessary to detect exactly the pitch. The algorithms of pitch extraction with have been proposed until now are difficult to detect pitches over wide range speech signals. In this paper, thus, we proposed a new pitch detection algorithm that used a low pass filter with variable bandwidth. It is the method that preprosses to find the first formant of speech signals by the FFT at each frame and detects the pitches for signals LPFed with the cut off frequency according to the first formant. Applying the method, we obtained the pitch contours, improving the accuracy of pitch detection in some noise environments.
This paper presents real-time implementation of speech vocoder for PSTN video telephony using ITU G.723 16Kbps ADPCM algorithm. The ADPCM encoder accepts 8-bit PCM compressed signals and expends it to a 14-bit-per-sample. The predicted values are subtracted from encoded signals to produce difference signals. Adaptive quantization is performed on the difference signal to produce a 2-bit, output for transmission over the channel. Computer simulations and experiments were performed to evaluate the performance of the speech vocoder.
Kang, Jin Ah;Han, Mikyong;Jang, Jong-Hyun;Kim, Hong Kook
ETRI Journal
/
v.38
no.6
/
pp.1064-1073
/
2016
An adaptive speech streaming method to improve the perceived speech quality of a software-based multipoint control unit (SW-based MCU) over IP networks is proposed. First, the proposed method predicts whether the speech packet to be transmitted is lost. To this end, the proposed method learns the pattern of packet losses in the IP network, and then predicts the loss of the packet to be transmitted over that IP network. The proposed method classifies the speech signal into different classes of silence, unvoiced, speech onset, or voiced frame. Based on the results of packet loss prediction and speech classification, the proposed method determines the proper amount and bitrate of redundant speech data (RSD) that are sent with primary speech data (PSD) in order to assist the speech decoder to restore the speech signals of lost packets. Specifically, when a packet is predicted to be lost, the amount and bitrate of the RSD must be increased through a reduction in the bitrate of the PSD. The effectiveness of the proposed method for learning the packet loss pattern and assigning a different speech coding rate is then demonstrated using a support vector machine and adaptive multirate-narrowband, respectively. The results show that as compared with conventional methods that restore lost speech signals, the proposed method remarkably improves the perceived speech quality of an SW-based MCU under various packet loss conditions in an IP network.
This paper shows how a distinctive feature model can effectively be implemented into speech understanding within the framework of the Optimality Theory(OT); i.e., to show how distinctive features can optimally be extracted from given speech signals, and how segments can be chosen as the optimal ones among plausible candidates. This paper will also show how the sequence of segments can successfully be matched with optimal words in a lexicon.
We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.12
/
pp.1756-1760
/
2015
This paper focuses on a priori signal to noise ratio (SNR) estimation method for the speech enhancement. There are many researches for speech enhancement with several ambient noise cancellation methods. The method based on spectral subtraction (SS) which is widely used in noise reduction has a trade-off between the performance and the distortion of the signals. So the need of adaptive method like an estimated a priori SNR being able to making a high performance and low distortion is increasing. The decision directed (DD) approach is used to determine a priori SNR in noisy speech signals. A priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a modified a priori SNR estimator and the weighted rational transfer function for speech enhancement with wind noises. The experimental result shows the performance of our proposed estimator is better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862) compare to the conventional DD approach-based systems and different noise reduction methods.
Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
/
v.18
no.1
/
pp.22-25
/
2007
Background and Objectives: Biomedical signals have been usually used for the diagnosis of the laryngeal function such as speech, electroglottograph(EGG), airflow and other signals. But, in most cases these signals were analysed separately. Here, we propose a new interchannel parameter Glottal Closure Delay Ratio(GCDR) which is estimated from speech and EGG measured simultaneously. Materials and Method: Speech and EGG signal were recorded simultaneously from 13 normal subjects, 39 patients. The patients' data included 16 polyps and 23 vocal folds palsy. Time difference between glottal closing instance on EGG and the first maximum peak on speech in a pitch period was calculated. Glottal closing instance was defined as the maximum peak on the first derivative of EGG signal(dEGG). Results: The standard deviation and jitter were calculated using 20-30 GCDRs extracted from each data, and they are significant different between normal and vocal fold paralysis group. Conclusion: The GCDR may be the first index reflecting speech and EGG characteristics and the perturbation of this parameter was significant different between normal and vocal fold paralysis group.
Using natural speech commands for controlling a human-robot is an interesting topic in the field of robotics. In this paper, our main focus is on the verification of a speaker who gives a command to decide whether he/she is an authorized person for commanding. Among possible dynamic features of natural speech, pitch period is one of the most important ones for characterizing speech signals and it differs usually from person to person. However, current techniques of pitch detection are still not to a desired level of accuracy and robustness. When the signal is noisy or there are multiple pitch streams, the performance of most techniques degrades. In this paper, we propose a two-level approach for pitch detection which in compare with standard pitch detection algorithms, not only increases accuracy, but also makes the performance more robust to noise. In the first level of the proposed approach we discriminate voiced from unvoiced signals based on a neural classifier that utilizes cepstrum sequences of speech as an input feature set. Voiced signals are then further processed in the second level using a modified standard AMDF-based pitch detection algorithm to determine their pitch periods precisely. The experimental results show that the accuracy of the proposed system is better than those of conventional pitch detection algorithms for speech signals in clean and noisy environments.
The Journal of the Korea institute of electronic communication sciences
/
v.14
no.5
/
pp.811-816
/
2019
This paper first proposes a technique to separate clean speech signals and mixed noise signals by using an independent vector analysis algorithm of frequency band for 4 channel speech source signals with a noise. An improved output speech signal from the proposed independent vector analysis algorithm is obtained by using the cross-correlation between the signal outputs from the frequency domain delay-sum beamforming and the output signals separated from the proposed independent vector analysis algorithm. In the experiments, the proposed algorithm improves the maximum SNRs of 10.90dB and the segmental SNRs of 10.02dB compared with the frequency domain delay-sum beamforming algorithm for the input mixed noise speeches with 0dB and -5dB SNRs including white noise, respectively. Therefore, it can be seen from this experiment and consideration that the speech quality of this proposed algorithm is improved compared to the frequency domain delay-sum beamforming algorithm.
A multi-mode harmonic transform coding (MMHTC) for speech and music signals is proposed. Its structure is organized as a linear prediction model with an input of harmonic and transform-based excitation. The proposed coder also utilizes harmonic prediction and an improved quantizer of excitation signal. To efficiently quantize the excitation of music signals, the modulated lapped transform(MLT) is introduced. In other words, the coder combines both the time domain (linear prediction) and the frequency domain technique to achieve the best perceptual quality. The proposed coder showed better speech quality than that of the 8 kbps QCELP coder at a bit-rate of 4 kbps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.