This article is concerned with automatic segmentation of two adjacent vowels for speech signals. All kinds of transition case of adjacent vowels can be characterized by spectrogram. Firstly the voiced-speech is extracted by the histogram analysis of vowel indicator which consists of wavelet low pass components. Secondly given phonetic transcription and transition pattern spectrogram, the voiced-speech portion which has consecutive vowels automatically segmented by the template matching. The cross-correlation function is adapted as a template matching method and the modified correlation coefficient is calculated for all frames. The largest value on the modified correlation coefficient series indicates the boundary of two consecutive vowel sounds. The experiment is performed for 154 vowel transition sets. The 154 spectrogram templates are gathered from 154 words(PRW Speech DB) and the 161 test words(PBW Speech DB) which are uttered by 5 speakers were tested. The experimental result shows the validity of the method.
We propose to use independent component analysis (ICA) and deep neural network (DNN) to detect music sections in broadcast drama contents. Drama contents mainly comprise silence, noise, speech, music, and mixed (speech+music) sections. The silence section is detected by signal activity detection. To detect the music section, we train noise, speech, music, and mixed models with DNN. In computer experiments, we used the MUSAN corpus for training the acoustic model, and conducted an experiment using 3 hours' worth of Korean drama contents. As the mixed section includes music signals, it was regarded as a music section. The segmentation error rate (SER) of music section detection was observed to be 19.0%. In addition, when stereo mixed signals were separated into music signals using ICA, the SER was reduced to 11.8%.
본 연구는 한국어 분절음 인식을 위한 인식 단위 설정과 학습시 학습 데이터 분할 방법에 대한 연구이다 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화와 학습시 학습 데이터 분할 방법에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식 단위 설정과 현대어 발음에 기초한 인식 단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였으며, 학습 데이터 분할 방법에 따른 인식 결과는 손으로 분할한 방법이 자동 분할 방법보다 약 2-3%의 인식 향상을 보였다. 또한 인식 단위의 설정에 있어서 독립된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(bipbone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.
본 논문에서는 음절이 잘 발달되어 있는 한국어에 대해서 신뢰할 수 있는 완전 자동화된 레이블링 시스템을 제안한다. 음운 및 음향학적인 정보를 최대한 이용하고 분할에러를 줄이기 위해서 조절 메카니즘의 하나로 DAC개념을 사용하여 음성을 speechlet으로 나누고 분할 된 음성 구간에 대해서 레이블링을 시도하는 DAC기반 분할알고리즘이다. HMM방법이 획일적이고 확정적인 성능을 갖는 반면 본 제안 방법은 음성학적인 특화지식을 컴포넌트로 개발 추가 계속 향상시킬 수 있는 프레임워크를 제시하고 있다는 점에서 주요 의의가 있다고 하겠다. MM과 같은 통계학적인 방법을 이용하지 않고 음운학적, 음향학적 지식만을 이용하는 새로운 방법은 수행속도와 음성학적인 특화 지식컴포넌트를 확장함에 따라 일관성이 있으며 효과적 방법으로 적용가능 할 것이다. 제안 방법을 검증하기 위하여 실험결과를 제시하였다.
Ratsameewichai, S.;Theera-Umpon, N.;Vilasdechanon, J.;Uatrongjit, S.;Likit-Anurucks, K.
대한전자공학회:학술대회논문집
/
대한전자공학회 2002년도 ITC-CSCC -1
/
pp.110-112
/
2002
In this paper, a new technique for Thai isolated speech phoneme segmentation is proposed. Based on Thai speech feature, the isolated speech is first divided into low and high frequency components by using the technique of wavelet decomposition. Then the energy contour of each decomposed signal is computed and employed to locate phoneme boundary. To verity the proposed scheme, some experiments have been performed using 1,000 syllables data recorded from 10 speakers. The accuracy rates are 96.0, 89.9, 92.7 and 98.9% for initial consonant, vowel, final consonant and silence, respectively.
잡음이 많고 여러 사람이 있는 공간에서 음성인식의 성능은 깨끗한 환경보다 저하될 수밖에 없다. 이러한 문제점을 해결하기 위해 본 논문에서는 여러 신호가 섞인 혼합 음성에서 관심 있는 화자의 음성만 추출한다. 중첩된 구간에서도 효과적으로 분리해내기 위해 VoiceFilter 모델을 사용하였으며, VoiceFilter 모델은 여러 화자의 발화로 이루어진 음성과 관심 있는 화자의 발화로만 이루어진 참조 음성이 입력으로 필요하다. 따라서 본 논문에서는 Probabilistic Linear Discriminant Analysis(PLDA) 유사도 점수로 군집화하여 혼합 음성만으로도 참조 음성을 대체해 사용하였다. 군집화로 생성한 음성에서 추출한 화자 특징과 혼합 음성을 VoiceFilter 모델에 넣어 관심 있는 화자의 음성만 분리함으로써 혼합 음성만으로 화자 구분 시스템을 구축하였다. 2명의 화자로 이루어진 전화 상담 데이터로 화자 구분 시스템의 성능을 평가하였으며, 분리 전 상담사(Rx)와 고객(Tx)의 음성 Source to Distortion Ratio(SDR)은 각각 5.22 dB와 -5.22 dB에서 분리 후 각각 11.26 dB와 8.53 dB로 향상된 성능을 보였다.
본 논문에서는 폴리포닉 오디오 신호에 대한 정현파 모델링 방법을 제안한다. 정현화 모델링을 폴리포닉 오디오 신호에 적용하는데 있어서 가장 큰 문제점은 스펙트럼 분석을 위한 분석 윈도우의 크기를 결정할 수 없다는 것이다. 또한 고음질의 합성음을 위해서는 악기음의 특성을 결정짓는 어택이 잘 보존되어야 한다. 본 논문에서는 입력 신호를 6개의 옥타브 벤드 구조의 다중 해상도 필터 뱅크를 통과시키고, 각 서브벤드 신호에 대해 서로 다른 크기의 분석 윈도우를 적용시킴으로써 폴리포닉 오디오 신호에 대한 분석 윈도우 크기 결정 문제를 해결한다. 정현파 모델링에서 발생하는 어택과 같은 천이 구간에서의 퍼짐 현상을 개선하기 위해 각 서브밴드 신호에 동적 세그맨테이션 방법을 적용하여 천이 구간 근처에서는 분석과 합성 프레임 크기를 작게 하는 방법을 사용한다. 이 방법을 통해 서브밴드 신호의 구간별 시간-주파수 특성에 따라 적절한 크기의 윈도우를 선택할 수 있다. 동적 세그멘테이션 방법으로는 기존의 방법보다 계산량과 성능 면에서 더 나은 특성을 보이는 방법을 제안한다. 여러가지 폴리포닉 오디오 신호에 대한 시뮬레이션 결과 제안한 정현파 모델링 방법이 음질의 손상 없이 원래 신호를 잘 복원할 수 있음을 확인하였다.
In this paper, we show that one can enhance the performance of blind segmentation of phoneme boundaries by adopting the knowledge of Korean syllabic structure and the regions of voiced/unvoiced sounds. eh proposed method consists of three processes : the process to extract candidate phoneme boundaries, the process to detect boundaries of voiced/unvoiced sounds, and the process to select final phoneme boundaries. The candidate phoneme boudaries are extracted by clustering method based on similarity between two adjacent clusters. The employed similarity measure in this a process is the ratio of the probability density of adjacent clusters. To detect he boundaries of voiced/unvoiced sounds, we first compute the power density spectrum of speech signal in 0∼400 Hz frequency band. Then the points where this paper density spectrum variation is greater than the threshold are chosen as the boundaries of voiced/unvoiced sounds. The final phoneme boundaries consist of all the candidate phoneme boundaries in voiced region and limited number of candidate phoneme boundaries in unvoiced region. The experimental result showed about 40% decrease of insertion rate compared to the blind segmentation method we adopted.
실시간 음성 인식기의 구현에 있어서 선행되어야 할 과제는 신뢰성 있는 음성구간 검출과 적절한 음성특징벡터를 구하는 것이다. 그러나, 주변 잡음이 인가되는 환경에서는 신뢰성 있는 음성구간 검출이 어렵게 되어 적절한 음성특징벡터를 구할 수 없게 되어 최종적으로 인식기의 성능 저하를 초래하게 된다. 이러한 문제점을 보완하기 위하여 본 논문에서는 일반적으로 사용되어지는 단구간 파러 스펙트럼 외에 잡음에 강인한 특성을 가질 수 있도록 하는 새로운 특징 파라메터로써 스펙트럼 밀도비교척도와 선형회귀를 이용한 선형결정함수를 사용하였다. 이러한 두 가지 파라메터를 추가하여 주변 잡음의 크기에 따라 각각의 (파라메터를 적절한 가중치로 조합하여 음성구간 결정을 수행한 다음 DTW를 사용하여 인식실험을 한 결과 주변 잡음이 존재하는 환경에서도 강인한 특성을 가짐을 확인할 수 있었다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.142-147
/
1998
Recently, 8 kb/s CS-ACELP coder of G.729 is atandardized by ITU-T SG15 and it has been reported that the speech quality of G729 is better than or equal to that of 32kb/s ADPCM. However G.729 is the fixed rate speech coder, and it does not consider the property of voice activity in mutual conversation. If we use the voice activity, we can reduce the average bit rate in half without any degradations of the speech quality. In this paper, we propose an efficient variable rate algorithm for G.729. The variable rate algorithm consists of two main subjects, the rate determination algorithm and algorithm, we combine the energy-thresholding method, the phonetic segmentation method by integration of various feature parameters obtained through the analysis procedure, and the variable hangover period method. Through the analysis of noise features, the 1 kb/s sub rate coder is designed for coding the background noise signal. So, we design the 4 kb/s sub rate coder for the unvoiced parts. The performance of the variable rate algorithm is evaluated by the comparison of speed quality and average bit rate with G.729. Subjective quality test is also done by MOS test. Conclusively, it is verified that the proposed variable rate CS-ACELP coder produced the same speech quality as G.729, at the average bit rate of 4.4 kb/s.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.