다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.
The main objective of this study is to investigate the influence of utterance internal pause in English speaking evaluation. To avoid possible confusion with other errors caused by segmental and prosodic inaccuracy, stem utterances with two different length obtained from a native speaker were manipulated to make a set of stimuli tokens through insertion of pauses whose length and position vary. After a total of 90 participants classified into three proficiency groups rated the stimuli, the scored data set was statistically analyzed in terms of the mixed effects model. It was confirmed that predictors such as pause length, pause position and utterance length significantly influence raters' evaluation scores. Especially, a dominating effect was found in such a way that raters gradually deducted scores in accordance with the increase of pause duration. In another experiment, a tree-based statistical learning technique was utilized to check which of the significant predictors played a more influential role than others. The findings in this paper are expected to be practically informative for both the test takers who are preparing for an English speaking test and the raters who desire to develop more objective rubric of speaking evaluation.
최근 선박 운항의 고효율화 및 안전성 확보를 위하여 지능형 선박 시스템에 관한 연구가 활발하게 진행되고 있다. 전문가의 지식과 경험 정보가 데이터베이스로 구축된 전문가 시스템의 지식 정보를 이용하여 안전하고 효율적인 선박 운항이 가능한 항해 지원 시스템에 관한 연구도 활발하다. 따라서, 본 논문에서는 지능형 선박을 구현하기 위한 연구의 일환으로 퍼지 추론과 휴먼 인터페이스의 하나인 음성 인식 기술을 적용하여 선박 운항자의 부담 경감 및 인원 절감 등의 효과를 가져 올 수 있는 지능형 선박 조종 시스템을 구축한다. 구체적인 연구방법으로는 먼저, 음성 인식 기술과 지능형 학습 기법을 기반으로 음성 지시 기반 학습 시스템을 구현하고, 다음으로 퍼지 추론에 의한 조타수 조작 모델을 구성하여 PC기반 원격 제어 시스템을 구축하였다. 마지막으로 구현된 음성 지시 조타 제어 시스템을 모형 선박 시스템에 적용하여 그 효용성을 확인하였다.
In this paper, we present a 5W1H programming model for IT non-experienced people who are not familiar with computer programming and those who need programming education. Based on this model, we can design a development tool that can be easily programmed by beginners. This development tool is a programming method applying the 5W1H concept and constructs a sentence to satisfy the control condition of 'Who, When, Where, What, and How', which is the sentence element of 5W1H. Therefore, the user can easily develop the target system as if constructing the sentence without learning the programming language of the target system. In this paper, to verify the effectiveness of the 5W1H programming model proposed in this paper, we applied the concept of 5W1H programming to Arduino and developed the development tool and performed the first verification and applied the second verification to the speech recognition smart home development platform.
최대 엔트로피 모델은 자연언어를 모델링하기 위한 좋은 방법이다. 하지만, 최대 엔트로피 모델을 전치사구 접속과 같은 실제 언어 문제에 적용할 때, 자질 선택과 계산 복잡도의 두 가지 문제가 발생한다. 본 논문에서는, 이런 문제와 자연언어 자원에 존재하는 불균형 데이터 문제를 해결하기 위한 최대 엔트로피 부스팅 모델(maximum entropy boosting model)을 제시하고, 이를 영어의 전치사구 접속과 품사 결정 모호성 해소에 적용한다. Wall Street Journal 말뭉치에 대한 실험 결과, 문제의 모델링에 아주 작은 노력을 들였음에도 불구하고, 전치사구 접속 문제에 대해 84.3%의 정확도와 품사 결정 문제에 대해 96.78%의 정확도를 보여 지금까지 알려진 최고의 성능과 비슷한 결과를 보였다.
최근 시스템에 음성 인증 기능이 탑재됨에 따라 화자(Speaker)를 정확하게 인증하는 중요성이 높아지고 있다. 이에 따라 다양한 방법으로 화자를 인증하는 모델이 제시되어 왔다. 본 논문에서는 Short-time Fourier transform(STFT)를 적용한 새로운 화자 인증 모델을 제안한다. 이 모델은 기존의 Mel-Frequency Cepstrum Coefficients(MFCC) 추출 방법과 달리 윈도우 함수를 약 66.1% 오버랩하여 화자 인증 시 정확도를 높일 수 있다. 새로운 화자 인증 모델을 제안한다. 이 때, LSTM 셀을 적용한 Recurrent Neural Network(RNN)라는 딥러닝 모델을 사용하여 시변적 특징을 가지는 화자의 음성 특징을 학습하고, 정확도가 92.8%로 기존의 화자 인증 모델보다 5.5% 정확도가 높게 측정되었다.
역전도 알고리즘은 연관 기억장치, 음성 인식, 패턴인식, 로보틱스등 여러 응용 분야에 다양하게 사용되고 있다. 그러나 새로운 학습 패턴을 추가적으로 학습시키려면 이전에학습했던 모든 패턴과 추가되는 패턴을 갖고 처음부터 새로운 학습을 수행하여야 한다. 이는 패턴의 개수가 점차 늘어날수록 학습에 소요되는 시간이 기하 급수적으로 길어지는 결과를 초래하게 된다. 따라서 주기적으로 다량의 데이터를 추가로 학습을 할 경우에 이러한 점진적 학습은 반드시 해결해야 할 문제점으로 간주된다. 본 논문에서는 기존의 신경망 구조는 그대로 유지하면서 대표 패턴을 추출해 추가 학습을 수행하는 방법을 제안하고 제안된 기법의 효율성을 위해 기계 학습 분야의 벤치마크로 많이 사용되는 Monk's data와 Iris data에 적용해 보았다.
본 연구는 2014년도에 조사가 완료된 한국아동패널 자료를 활용하여 자아발달, 사회성발달, 학습준비도, 학업능력의 잠재변수에 대한 관계를 분석하고 학령전기 아동의 학업능력에 영향을 미치는 요인을 찾아내는 것이다. 본 연구 대상은 한국아동패널 7차(2014년도) 자료의 2150가구 중에서 해당 자료의 미응답자와 시스템 결측치 1037가구를 제외한 1113가구의 초등학교 취학전 만 6세의 아동들이다. 연구 모델의 경로 효과를 분석한 결과 자아발달과 학업능력 사이에서 자아발달이 학업능력에 직접적인 영향을 미치는 동시에 사회성 발달과 학습 준비도를 매개로 한 간접적인 영향에도 유의미하게 나타났다. 그리고 학업능력에 미치는 자아발달, 사회성발달, 학습준비도 중에서 학습준비도가 가장 큰 비중으로 영향을 미치는 것으로 나타났다. 결과적으로 학령전기 아동의 학업능력은 창의력과 문제해결능력을 겸비한 인재로 육성하기 위해서 학습준비도가 매우 중요하게 다루어져야 한다는 것이다.
4층구조의 다층퍼셉트론을 변형하여 3 종류의 다층회귀예측신경망을 구성하고, 예측차수, 두 은닉층의 뉴런개수, 연결세기의 초기치 및 전달함수 변화에 따른 각 망의 음성인식성능을 실험을 통해 각각 비교 분석한다. 실험결과에 의하면, 다층회귀신경망이 다층퍼셉트론에 비해 음성인식성능이 우수하다. 그리고 구조적으로는 상위은닉층의 출력을 하위은닉층으로 회귀할 때 인식성능이 가장 우수하며, 각 망 공히 상, 하위은닉층의 뉴런 10 혹은 15개, 예측차수 3 혹은 4차일 때 인식률이 양호하다. 학습시 연결세기의 초기치를 -0.5에서 0.5사이로 설정하고, 하위은닉층에서 단극성 시그모이드 전달함수를 사용할 때 인식성능이 더욱 향상된다.
본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, fuzzy개념를 이용한 VQ(Vector Quantization)/NN(Neural Network)에 의한 음성 인식 방법을 제안한다. 이 방법은 fuzzy를 이용하여 VQ codebook에 의해 다중 관측열(multi-observation sequence)을 구해 각 symbol이 데이타로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상어로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 음성 데이터베이스를 이용하여 fuzzy를 이용하지 않은 VQ/NN과 fuzzy를 이용한 VQ/HMM(hidden Markov model)에 의한 인식률과 비교 실험한다. 실험 결과에 의하며, VQ/NN에 의한 인식률은 92.3%이며, fuzzy를 이용한 VQ/HMM에 의한 인식률은 93.8%이고, fuzzy를 이용한 VQ/Nn에 의한 인식률은 95.7%이다. 그러므로, 본 연구의 fuzzy를 이용한 VQ/NN이 학습 능력이 뛰어난 관계로 fuzzy를 이용한 VQ/HMM과 일반적인 VQ/NN 보다 인식률이 향상됨을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.