• Title/Summary/Keyword: Speech Learning Model

Search Result 191, Processing Time 0.027 seconds

Emotional Intelligence System for Ubiquitous Smart Foreign Language Education Based on Neural Mechanism

  • Dai, Weihui;Huang, Shuang;Zhou, Xuan;Yu, Xueer;Ivanovi, Mirjana;Xu, Dongrong
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2014
  • Ubiquitous learning has aroused great interest and is becoming a new way for foreign language education in today's society. However, how to increase the learners' initiative and their community cohesion is still an issue that deserves more profound research and studies. Emotional intelligence can help to detect the learner's emotional reactions online, and therefore stimulate his interest and the willingness to participate by adjusting teaching skills and creating fun experiences in learning. This is, actually the new concept of smart education. Based on the previous research, this paper concluded a neural mechanism model for analyzing the learners' emotional characteristics in ubiquitous environment, and discussed the intelligent monitoring and automatic recognition of emotions from the learners' speech signals as well as their behavior data by multi-agent system. Finally, a framework of emotional intelligence system was proposed concerning the smart foreign language education in ubiquitous learning.

Machine Learning Based Domain Classification for Korean Dialog System (기계학습을 이용한 한국어 대화시스템 도메인 분류)

  • Jeong, Young-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2019
  • Dialog system is becoming a new dominant interaction way between human and computer. It allows people to be provided with various services through natural language. The dialog system has a common structure of a pipeline consisting of several modules (e.g., speech recognition, natural language understanding, and dialog management). In this paper, we tackle a task of domain classification for the natural language understanding module by employing machine learning models such as convolutional neural network and random forest. For our dataset of seven service domains, we showed that the random forest model achieved the best performance (F1 score 0.97). As a future work, we will keep finding a better approach for domain classification by investigating other machine learning models.

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

A Deep Learning Model for Disaster Alerts Classification

  • Park, Soonwook;Jun, Hyeyoon;Kim, Yoonsoo;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.1-9
    • /
    • 2021
  • Disaster alerts are text messages sent by government to people in the area in the event of a disaster. Since the number of disaster alerts has increased, the number of people who block disaster alerts is increasing as many unnecessary disaster alerts are being received. To solve this problem, this study proposes a deep learning model that automatically classifies disaster alerts by disaster type, and allows only necessary disaster alerts to be received according to the recipient. The proposed model embeds disaster alerts via KoBERT and classifies them by disaster type with LSTM. As a result of classifying disaster alerts using 3 combinations of parts of speech: [Noun], [Noun + Adjective + Verb] and [All parts], and 4 classification models: Proposed model, Keyword classification, Word2Vec + 1D-CNN and KoBERT + FFNN, the proposed model achieved the highest performance with 0.988954 accuracy.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Recognition of Korean Vowels using Bayesian Classification with Mouth Shape (베이지안 분류 기반의 입 모양을 이용한 한글 모음 인식 시스템)

  • Kim, Seong-Woo;Cha, Kyung-Ae;Park, Se-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.852-859
    • /
    • 2019
  • With the development of IT technology and smart devices, various applications utilizing image information are being developed. In order to provide an intuitive interface for pronunciation recognition, there is a growing need for research on pronunciation recognition using mouth feature values. In this paper, we propose a system to distinguish Korean vowel pronunciations by detecting feature points of lips region in images and applying Bayesian based learning model. The proposed system implements the recognition system based on Bayes' theorem, so that it is possible to improve the accuracy of speech recognition by accumulating input data regardless of whether it is speaker independent or dependent on small amount of learning data. Experimental results show that it is possible to effectively distinguish Korean vowels as a result of applying probability based Bayesian classification using only visual information such as mouth shape features.

Creative Talent for Fusion-Positive Collective Intelligence-based Collaborative Learning Content Research ; Focusing on the tvN Connective Lecture Show 'Creation Club 199' (창의 융합인재 양성을 위한 집단지성기반 협력학습 콘텐츠 연구: tvN의 커넥티브(connective) 강연쇼 '창조클럽 199'를 중심으로)

  • Iem, Yun-Seo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.529-541
    • /
    • 2015
  • Collaborative learning of collective intelligence-based model is also ideal in higher education did not yet consensus still in the theoretical level. To become collective intelligence-based collaborative learning is to mobilize the competence of the various members should be promoted as much as possible with their own services designed to actively participate in and contribute to the goals of the joint. Is still based collaborative learning model of collective intelligence, which does the actual model is not developed in education is a key program in creative fusion judge called talent. The evolution of the main features of the house just in shaping the content of a modern lecture geureohagi need to check from time to time to see and pay attention. As part of this study, attempts were associated with the tvN planning and attention to trying connector Executive Lecture show "Creative Club 199" content. Well oriented intention to converge the needs of the times, but it is even more compelling naeeotda implement the collective intelligence based on 'how' the reality is that together with the participants.

Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm (심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1249-1256
    • /
    • 2019
  • In this paper, we propose a new algorithm to remove acoustic feedback and noise in hearing aids. Instead of using the conventional FIR structure, this algorithm is a deep learning algorithm using neural network adaptive prediction filter to improve the feedback and noise reduction performance. The feedback canceller first removes the feedback signal from the microphone signal and then removes the noise using the Wiener filter technique. Noise elimination is to estimate the speech from the speech signal containing noise using the linear prediction model according to the periodicity of the speech signal. In order to ensure stable convergence of two adaptive systems in a loop, coefficient updates of the feedback canceller and noise canceller are separated and converged using the residual error signal generated after the cancellation. In order to verify the performance of the feedback and noise canceller proposed in this study, a simulation program was written and simulated. Experimental results show that the proposed deep learning algorithm improves the signal to feedback ratio(: SFR) of about 10 dB in the feedback canceller and the signal to noise ratio enhancement(: SNRE) of about 3 dB in the noise canceller than the conventional FIR structure.

A Semi-supervised Learning of HMM to Build a POS Tagger for a Low Resourced Language

  • Pattnaik, Sagarika;Nayak, Ajit Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2020
  • Part of speech (POS) tagging is an indispensable part of major NLP models. Its progress can be perceived on number of languages around the globe especially with respect to European languages. But considering Indian Languages, it has not got a major breakthrough due lack of supporting tools and resources. Particularly for Odia language it has not marked its dominancy yet. With a motive to make the language Odia fit into different NLP operations, this paper makes an attempt to develop a POS tagger for the said language on a HMM (Hidden Markov Model) platform. The tagger judiciously considers bigram HMM with dynamic Viterbi algorithm to give an output annotated text with maximum accuracy. The model is experimented on a corpus belonging to tourism domain accounting to a size of approximately 0.2 million tokens. With the proportion of training and testing as 3:1, the proposed model exhibits satisfactory result irrespective of limited training size.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.