• Title/Summary/Keyword: Speech Detection

Search Result 472, Processing Time 0.024 seconds

Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks (음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • MALSORI
    • /
    • no.59
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF

Voice Activity Detection Algorithm Based on the Power Spectral Deviation of Teager Energy in Noisy Environment (잡음환경에서 Teager 에너지의 전력 스펙트럼 편차에 기반한 음성 검출 알고리즘)

  • Park, Yun-Sik;An, Hong-Sub;Lee, Sang-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.396-401
    • /
    • 2011
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. The presented VAD utilizes the power spectral deviation (PSD) based on Teager energy (TE) instead of the conventional PSD scheme to improve the performance of decision for speech segments. In addition, the speech absence probability (SAP) is derived in each frequency subband to modify the PSD for further VAD. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

A Study on Pitch Period Detection of Speech Signal Using Modified AMDF (변형된 AMDF를 이용한 음성 신호의 피치 주기 검출에 관한 연구)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.515-519
    • /
    • 2005
  • Pitch period that is a important factor in speech signal processing is used in various applications such as speech recognition, speaker identification, speech analysis and synthesis. So many pitch detection algoritms have been studied until now. AMDF which is one of pitch period detection algorithms chooses the time interval from valley point to valley point as pitch period. In selection of valley point to detect pitch period, complexity of the algoritm is increased. So in this paper we proposed the simple algorithm using modified AMDF that detects global minimum valley point as pitch period of speech signal and compared existing methods with it through simulation.

  • PDF

Performance Evaluation of English Word Pronunciation Correction System (한국인을 위한 외국어 발음 교정 시스템의 개발 및 성능 평가)

  • Kim Mu Jung;Kim Hyo Sook;Kim Sun Ju;Kim Byoung Gi;Ha Jin-Young;Kwon Chul Hong
    • MALSORI
    • /
    • no.46
    • /
    • pp.87-102
    • /
    • 2003
  • In this paper, we present an English pronunciation correction system for Korean speakers and show some of experimental results on it. The aim of the system is to detect mispronounced phonemes in spoken words and to give appropriate correction comments to users. There are several English pronunciation correction systems adopting speech recognition technology, however, most of them use conventional speech recognition engines. From this reason, they could not give phoneme based correction comments to users. In our system, we build two kinds of phoneme models: standard native speaker models and Korean's error models. We also design recognition network based on phonemes to detect Koreans' common mispronunciations. We get 90% detection rate in insertion/deletion/replacement of phonemes, but we cannot get high detection rate in diphthong split and accents.

  • PDF

Pitch Detection Using Wavelet Transform (웨이브렛 변환을 이용한 피치검출)

  • Seok, Jong-Won;Son, Young-Ho;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1999
  • Mallat has shown that, with a proper choice of wavelet function, the local maxima of wavelet transformed signal indicate a sharp variation in the signal. Since the glottal closure causes sharp discontinuities in the speech signal, dyadic wavelet transform can be useful for detecting abrupt change in the voiced sounds, i.e., epochs. In this paper, we investigate the glottal closure instants obtained from the wavelet analysis of speech signal and compare them with those obtained from the EGG signal. Then, we detect pitch period of speech signal on the basis of these results. Experimental results demonstrated that local maxima of wavelet transformed signal give accurate estimation of epoch and pitch periods of voiced sound obtained by the proposed algorithm also correspond to those from EGG well.

  • PDF

A Study on Lip Detection based on Eye Localization for Visual Speech Recognition in Mobile Environment (모바일 환경에서의 시각 음성인식을 위한 눈 정위 기반 입술 탐지에 대한 연구)

  • Gyu, Song-Min;Pham, Thanh Trung;Kim, Jin-Young;Taek, Hwang-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.478-484
    • /
    • 2009
  • Automatic speech recognition(ASR) is attractive technique in trend these day that seek convenient life. Although many approaches have been proposed for ASR but the performance is still not good in noisy environment. Now-a-days in the state of art in speech recognition, ASR uses not only the audio information but also the visual information. In this paper, We present a novel lip detection method for visual speech recognition in mobile environment. In order to apply visual information to speech recognition, we need to extract exact lip regions. Because eye-detection is more easy than lip-detection, we firstly detect positions of left and right eyes, then locate lip region roughly. After that we apply K-means clustering technique to devide that region into groups, than two lip corners and lip center are detected by choosing biggest one among clustered groups. Finally, we have shown the effectiveness of the proposed method through the experiments based on samsung AVSR database.

A Study on the Robust Pitch Period Detection Algorithm in Noisy Environments (소음환경에 강인한 피치주기 검출 알고리즘에 관한 연구)

  • Seo Hyun-Soo;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.481-484
    • /
    • 2006
  • Pitch period detection algorithms are applied to various speech signal processing fields such as speech recognition, speaker identification, speech analysis and synthesis. Furthermore, many pitch detection algorithms of time and frequency domain have been studied until now. AMDF(average magnitude difference function) ,which is one of pitch period detection algorithms, chooses a time interval from the valley point to the valley point as the pitch period. AMDF has a fast computation capacity, but in selection of valley point to detect pitch period, complexity of the algorithm is increased. In order to apply pitch period detection algorithms to the real world, they have robust prosperities against generated noise in the subway environment etc. In this paper we proposed the modified AMDF algorithm which detects the global minimum valley point as the pitch period of speech signals and used speech signals of noisy environments as test signals.

  • PDF

Robust Endpoint Detection Algorithm For Speaker Verification (화자인식을 위한 강인한 끝점 검출 알고리즘)

  • Jung Dae Sung;Kim Jung Gon;Kim Hyung Soon
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.137-140
    • /
    • 2003
  • In this paper, we propose a robust endpoint detection algorithm for speaker verification. Proposed algorithm uses energy and cepstral distance parameters, and it replaces the detected endpoints with endpoints of voiced speech, when the estimated signal-to-noise ratio (SNR) is low. Experimental results show that proposed algorithm is superior to energy-based endpoint detection algorithm.

  • PDF

Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments (잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • This paper introduces the method for detect voices and exact end point at low SNR by maximizing voice energy. Conventional VAD (Voice Activity Detection) algorithm estimates noise level so it tends to detect the end point inaccurately. Moreover, because it uses relatively long analysis range for reflecting temporal change of noise, computing load too high for application. In this paper, the SEM-VAD (Speech Energy Maximization-Voice Activity Detection) method which uses psycho-acoustical bark scale filter banks to maximize voice energy within frames is introduced. Stable threshold values are obtained at various noise environments (SNR 15 dB, 10 dB, 5 dB, 0 dB). At the test for voice detection in car noisy environment, PHR (Pause Hit Rate) was 100%accurate at every noise environment, and FAR (False Alarm Rate) shows 0% at SNR15 dB and 10 dB, 5.6% at SNR5 dB and 9.5% at SNR0 dB.

A Simple Speech/Non-speech Classifier Using Adaptive Boosting

  • Kwon, Oh-Wook;Lee, Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.124-132
    • /
    • 2003
  • We propose a new method for speech/non-speech classifiers based on concepts of the adaptive boosting (AdaBoost) algorithm in order to detect speech for robust speech recognition. The method uses a combination of simple base classifiers through the AdaBoost algorithm and a set of optimized speech features combined with spectral subtraction. The key benefits of this method are the simple implementation, low computational complexity and the avoidance of the over-fitting problem. We checked the validity of the method by comparing its performance with the speech/non-speech classifier used in a standard voice activity detector. For speech recognition purpose, additional performance improvements were achieved by the adoption of new features including speech band energies and MFCC-based spectral distortion. For the same false alarm rate, the method reduced 20-50% of miss errors.