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Abstract

We propose a new method for speech/non-speech classifiers based on concepts of the adaptive boosting (AdaBoost) 

algorithm in order to detect speech for robust speech recognition. The method uses a combination of simple base classifiers 

through the AdaBoost algorithm and a set of optimized speech features combined with spectral subtraction. The key benefits 

of this method are the simple implementation, low computational complexity and the avoidance of the over-fitting problem. 
We checked the validity of the method by comparing its performance with the speech/non-speech classifier used in a 

standard voice activity detector. For speech recognition purpose, additional performance improvements were achieved by 

the adoption of new features including speech band energies and MFCC-based spectral distortion. For the same false alarm 
rate, the method reduced 20-50% of miss errors.
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I. Introduction

Recent application of speech recognition technologies to 
portable devices (e.g., personal digital assistants, cellular 

phones with a hands-free car kit) in realistic noisy 
environments made robust speech detection one of the 
most critical components. Speech detection or endpoint 

detection has turned out to significantly influence word 

accuracy in case of cellular phones operating in a noisy 
automobile environment[ 1,2]. Conventional endpoint detec­
tion algorithms based on energy and zero crossing rate 
(ZCR) do not handle noisy speech signals in a proper 
manner especially in mobile communications. The ZCR 
feature is not suitable any more for noisy environments.
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Various other features including high-pass/low-pass en- 
ergies[3], linear prediction coding (LPC) residual and 
auto-correlation of LPC residual information[4] have been 

used to improve robustness and accuracy of speech 
detectors. For noisy speech detection, speech enhance­

ment stages are often adopted to reduce noise signals 
before speech/non-speech classification[5,6].

Usually, the noise spectrum is assumed known from the 

early part of the utterances. However, some methods 
estimate the noise spectrum continuously by using 
minimum statistics on a predefined time window[7], 
taking median values[8], or tracking power envelope 
dynamics[3]. A necessary and strong constraint for most 
speech/non-speech classification algorithms is that they 

should have as low computational complexity as possible 
to reduce computational burden on the entire speech 

recognition system. For that purpose, a decision tree was 
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used to combine multiple features fbr in中roved accuracy[4].

The purpose of this study was to design improved 
speech detectors robust to noise in various environments. 
The speech detectors should be designed automatically 

fi'om data to relieve human efforts. The computation load 
should be as low as the G.729 voice activity detector 
(VAD) which uses multiple decision hyperplanes fbr 
s peech/non-speech classification. To satisfy the con­

straints, we apply an adaptive boosting (AdaBoost) 
algorithm[9,10] to speech/non-speech classifier design.

Even though our purpose is to obtain speech detectors, 
we compared the performance with the G.729 VAD and 
illustrated the validity of the method just because it is a 
publicly available reference. The proposed algorithm is 
intended fbr robust speech recognition. Speech detection 
can be implemented in two stages: speech/non-speech 
classification and subsequent postprocessing. The perfor­
mance of speech detection largely depends on speech/ 
non-speech classification. Hence we focused on speech/ 
non-speech classification in this paper.

To check the validity of speech/non-speech classifier 
design using the AdaBoost algorithm, we combine 

multiple features extracted from voice activity detectors in 
the G.729 Annex B speech coding recommendationfl 1] 
using the AdaBoost algorithm and show that the algorithm 
can be successfully applied to designing a new classifier 
and can achieve accuracy similar to the manually- 
optimized G.729 VAD with comparable computational 
complexity. After confirming the validity of the AdaBoost 
algorithm we proposed a new speech speech/non-speech 
classifier fbr speech recognition by using new features and 
weights for spectral-subtracted signals. Further analysis of 
the learned weights for the base classifiers revealed the 
contribution of each feature component.

II. Speech Detection Using the AdaBoost 
Algorithm

2.1. Speech/Non-speech Classifier Design
Input speech signals of voice activity detection with the 

sampling frequency of 8 kHz are preemphasized and 

blocked into frames of 10 ms. A speech signal frame is 
transformed into the frequency domain by the fast Fourier 
transform (FFT).

The VAD used in the G.729 Annex B recommendation 
uses the following features for speech/non-speech 
classification[ll]:

(1) Instantaneous full-band log energy (0-4 kHz)
(2) Low-band log energy difference (0 - 1 kHz)

(3) Full-band log energy difference (0-4 kHz)

(4) Spectral distortion measured by line spectral fre­
quencies

(5) Zero-crossing rate difference (ZCR)

Each difference feature is obtained by the difference 
between the instantaneous parameter and the running 
average of the background noise.

In our design we can keep the simplicity of the 
speech/non-speech classifier of the ITU-T Recommen­

dation G.729 Annex B while we obtain the hyperplanes 

in a principled and automatic manner by using the 

AdaBoost algorithm. The AdaBoost algorithm was chosen 
among many classifiers due to its simple use of base 

classifiers and its non-overfitting property.
All differential features were normalized to have zero 

mean and unit variance along each axis. We used a 

perceptron as the base classifier with 차此 sigmoidal 
activation fiinction 丿心【)커anh( /x) where 7=4 was used 

to control the range of boundary regions in our 
experiments. The base classifier ht(x) is real-valued rather 

than binary, which can be interpreted as confidence-rated 

prediction[9]. The sign of /“(x) is the predicted label and 

the magnitude denotes a measure of confidence. We use 
base classifiers with linear decision boundaries due to fast 
and simple learning procedures. For hQ或 only a single 

feature or whole features can be used. We chose to use 

a decision stump where only a sin읺e feature is used for 
each base classifier fbr its simplicity and trainability. The 
learning algorithm to combine weights is given in 
Appendix 5.1.

For spectral subtraction, the noise spectrum is estimated 
from the input signals and subtracted from the magnitude 
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spectrum of input signals. In this work, we estimated the 

noise spectrum by tracking the minimum statistics of the 
magnitude spectrum [7], where the minimum of each 

frequency bin within the time window of 1 second was 
regarded as a noise component. This method does not 

require any other assumption on input speech utterances 

and can be used continuously without reinitialization. 
Note that there is no significant delay in using the 

minimum statistic because the last 1 second of windowed 

data is used. The spectral subtraction method adopted in 

this work and the selection of the relevant parameters are 
described in detail in Appendix 5.2.

Figure I illustrates the block diagram for the speech/ 

non-speech classifier based on adaptive boosting[9]. The 

final classifier is given as (2) and the relevant weights are 
trained by using the AdaBoost algorithm described in 
Appendix 5.1. When only one feature is used for each 
classifier, it resembles the partitioning of the feature space 
into vertical or horizontal decision boundaries. By 

combining the results of the base classifiers using the 

signum function, the decision boundary of the final 

classifier can be non-linear.
It may be regarded analogous to the multi-layer 

perceptron where perceptrons are combined by the upper 

layer. But in this case, the base classifiers are usually very 
simple and sequentially learned. While a decision tree­

based classifier propagates a decision error from the upper 
node to child nodes and thus errors in earlier stages cannot 

be recovered by the later stage, the AdaBoost-based 

classifier avoids this problem by using the result combined 
from all base classifiers.

2.2. New Features for Robust Speech Detection
The VAD in the G.729 Annex B is targeted for speech 

signals with rather low level of noise signals and its 
performance degrades as the signal-to-noise ratio (SNR) 

goes down to about 5 dB. Therefore a speech enhancement 

block is applied before feature extraction. In addition, it 
is advantageous to use mel-frequency cepstral coefficient 

(MFCC)-based features so that we can combine feature 

extraction and spectral subtraction to share the required 
computation with a speech recognizer.

Features for speech/non-speech classification are 

extracted as shown in Figure 2:
(1) Full-band speech log energy difference

(2) Low-band speech log energy difference (0 - 1.0 kHz)
(3) Pass-band speech log energy difference (1.0 - 2 kHz)
(4) Spectral distortion measured by MFCC

(5) Zero crossing rate difference

(6) Instantaneous total log energy
We note that in this case the band energies are for 

spectral-subtracted signals. The low-pass log energy and 

band-pass log energy are useful to reject high-frequency 
noise (eg, drill noise) and low-frequency noise (car noise) 

[3]. The MFCC-based feature can reflect the human 

perception characteristics better than the line spectrum

Fig니re 1. Speech/Non-speech classifier using the AdaBoost algorithm.
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Figure 2. Feat니「e extraction in combination with spectral subtraction-based speech enhancement.

frequency feature used in the G.729 VAD.

\\\. Experimental Results and Discussions

3.1. Toy Experiment
To validate the simplicity of the classifier as well as the 

accuracy in data classification problems, we designed a 
small toy experiment to illustrate the performance of the 
AdaBoost algorithm. The training data were generated by 

a mixture of Gaussians with means located at 4 different 
quadrants. For this kind of data, two hyperplanes parallel 

tu x- and y-axis combined with an OR logic can perform 
good classification. Figure 3 shows the experimental 

results with 25 decision stumps. The figure shows the 

classification results and the first 5 hyperplanes labeled in 

the appearing order, The error rate curves showed that the 

final combined classifier can classify the two classes 

successfully with as small as 3 hyperplanes.

3.2. Speech Database
To evaluate the performance of the proposed speech 

detector, we used the AURORA speech database [12]. We 
trained the speech classifiers with speech data in all 

environments and SNR levels available in the AURORA 
database: clean, 20, 15, 10, and 5 dB. For the test set, we 
used the speech data with the same noise environments

Figure 3. Classification results with decision stumps on toy 

data. The circle and cross denote the correctly 

classified samples with +1 and labels, respectively. 

The triangle denotes a missed sample and the star 

denotes a false alarm.

in the same range of SNRs. To- train speech classifiers, 

we need speech/non-speech labels for the speech data. 
Because the AURORA database did not provide the 
speech/non-speech labels, we obtained the label infor­
mation by running a Viterbi aligner obtained through 
multi-style training with various environments and noise 
levels. We manually corrected by viewing the spectro­

gram. We randomly sampled 12000 frames for the training 
data set and another 3000 samples for the validation data 
set. We used the test data set with babble and car noise 
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to evaluate the performance of speech/non-speech clas­

sification.

3.3. Voice Activity Detection
We used the decision stump and the perceptron as the 

base classifier to keep the classifier as simple as possible. 

With the decision stump, the base classifiers have 

axis-parallel decision boundaries and the final classifier 
used in speech detection can be implemented by 

comparing with threshold values determined by the 

parameters of the base classifiers. Experimental results 
showed that performance difference between the decision 

stump and the perceptron as the base classifier was not 
significant. In both cases, the classifiers converged 

sufficiently with 100 base classifiers and the difference 
between the training data set and the validation data set 

was small. To be precise, the decision stump showed 

slightly lower validation error rate for the training set but 
both of the base classifiers yielded a similar level of error 

rates for the test set. Since the implementation and 
computation of decision stumps are much simpler, we 

pursued only the decision stump case.
We evaluated the performance of the classifier under 

babble noise environments in different SNR conditions. 

The number of base classifiers used in the test was decided 
to give the minimum error rate fbr the validation test set. 
In this case the number of the base classifiers used in the 

test was 95. To obtain Figure 4, we normalized at to have 

니nity sum of absolute value of at and varied ^discretely 

from -0.3 to 0.5 with a step size of 0.05. Each symbol 
in the ROC curve denotes the condition with a certain 
control parameter. The filled symbols denote the case of 
the G.729 VAD without any additional processing, where 
the performance is shown as a point for each SNR 
condition because the G.729 VAD has a fixed parameter. 
In both cases we did not use the hang-over scheme[11] 
to obtain a fair comparison. The performance points of the 
G.729 VAD were located near or on the ROC curves of 
our proposed method. The AdaBoost-based classification 
has the advantage that it can provide a flexible trade-off 
between the hit rate and the false alarm rate by controlling 
only one parameter S depending on applications.

We analyzed the learned weight values of the AdaBoost 
classifier as the number of base classifiers increases and 

the relative weight fbr each feature component as shown 
in Figure 5. The relative weight for each feature index was 

obtained by adding the weights for the base classifiers and 
normalizing the result. The results imply that the instan-

Figure 4. ROC c나rves of voice activity detection of original 

speech signals 니sing the AdaBoost classifier in babble 

noise environments. The filled symb이s denote the 

p티hrmance of the G.729 VAD without any addi­

tional processing, where the performance is shown 

as a point for each SNR condition because there is 

no contr이 parameter in the G.729 VAD. Only the 

feat니res from the current frame were 니sed.

Fig니「e 5. Relative weight of each feature component averaged 

over 200 base classifiers. The relative weight for 

each feature index in the bottom figure was 

obtained by adding the weights for 95 base 

classifiers and normalizing the result by the sum 

along the index.
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Fgure 6. ROC curves of voice activity detection of spectral- 

subtracted signals by the AdaBoost classifier in the 

babble noise environments. The filled symbols have 

the same meaning as Figure 4.
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Figure 7. Relative weight of each feature component averaged 

over 107 base classifiers.

taneous full-band log energy (1) and the low-band energy 

(2) are the most important two features in speech/non- 
speech classification.

We trained the AdaBoost classifier by using the speech 
signals enhanced by spectral subtraction. Using 107 base 

c'assifiers, we compared the performance with the 
previous case. Figure 6 shows the ROC curves for the 

spectral-subtracted signals. Although its performance 
degraded slightly in the clean speech case, the hit rate at 
the same false alarm rate was improved in the noisy cases. 

One important advantage in using the AdaBoost-based 
classifier is that we can automatically obtain a simple 

classifier with performance comparable to the manually 

optimized classifier.
We did not plot the performance of the G.729 with 

spectral subtraction because the operating points were 

mostly out of the current plot range: the false alarm rate 

was over 0.75 and the hit rate was over 0.95 for noisy 
speech. This is due to the changes in the speech signal 
characteristic induced by the spectral subtraction algorithm 
and the G.729 VAD cannot adapt to the distorted signals.

3.4. Using New Features for Robust Speech 
Detection

For speech detection purposes we attempted to use 

better features derived from feature extraction fbr speech 
recognition as described in Section 22 As shown in 

Figure 7, we analyzed the learned weight values and found 

that the low- and pass-band energies contribute to the 
performance of the classifier compared with the 

G.729-based features. In particular, the low-band speech 

log energy (2) has a relatively large weight and the 

spectral distortion feature (4) has a lower weight than the 
G.729 VAD because spectral subtraction introduced 
spectral distortion. However, the MFCC-based spectral 

distortion feature did not have a large weight because the 
spectral subtraction caused nonlinear distortion on the 

spectrum of the input signals.
Figure 8 shows the ROC curves in the babble noise 

environments. We used spectral subtraction and the new 

features. For every SNR condition the AdaBoost-based 
speech/non-speech classifier yielded improved perfor­

mance. For the same false alarm rate condition as in the 
G.729 VAD, the miss rate (=l-hit rate) decreased by 20-50 
percent. This improvement mainly results from spectral 

subtraction and the proper design of the classifier as the 

features are changed.
We compare the performance of the G.729 VAD in the 

babble noise environments with 10 dB SNR as shown in 
Figure 9: the AdaBoost classifier with G.729 features, the 

AdaBoost classifier with G.729 features and spectral 
subtraction, and the AdaBoost classifier with the new
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Figure 8. ROC curves in case of new features in the babble 

noise environments. The AdaBoost classifier was used 

for voice activity detection and spectral subtraction 

was applied before feature extraction.

Figure 9. Performance comparison of the G.729 VAD in the 

babble noise environments with 10 dB SNR： the 

original G.729 VAD ('G729'), the AdaBoost clas­

sifier with G.729 features ('AdaBoost') the AdaBoost 

이assifier with G.729 features and spectral subtrac­

tion (*SS + AdaBoost'), and the AdaBoost 디assifier 

with the new features and spectral subtraction (*SS 

+ MFCC + AdaBoost*).

features and spectral subtraction. Figure 9 shows that the 
AdaBoost-based classifier yields the same level of 

performance similar to the manually-optimized classifier. 
The AdaBoost classifier was systematically designed by 
multiple decision stumps, which requires a small number 
of computations. For better performance we changed the 

feature and improved the performance with minimal 

increase of computational load.

The performance in the noisy car environment was also 
evaluated with the same configuration as the babble noise 

environment. Experimental results showed that the 
AdaBoost classifier made similar performance improve­

ments. Due to the nature of the car noise, the false alarm 
rates were relatively small compared to the babble noise 

case.
Examining errors in the experiment, we found that in 

noisy cases most of the misclassification was made at the 
utterance boundary beginning or ending with a unvoiced 

sound (e.g., !\1 in eight, /f! in five and so on). With this 

regard, a more elaborate speech enhancement algorithm 

can be designed to further improve the VAD accuracy.

3.5. Considerations on Computational Complexity
For reference, we investigate the computational 

complexity of the G.729 VAD. The speech/non-speech 
classifier for the VAD uses 14 hyperplanes with 2 features 

involved for each hyperplane and the final decision is 

made through the sequential test of the hyperplanes. Each 

hyperplane needs one multiplication, one addition and one 

comparison.
On the contrary, the decision stump-based speech/ 

non-speech classifier requires 1 addition of the bias term, 
1 table lookup for tanh( ) and 1 multiplication by the 
weight for each base 이assifier. The required computation 
is linearly proportional to the number of base classifiers, 

which can be tuned with additional experiments.

IV. Conclusions

We proposed a new speech/non-speech classification 

algorithm based on the AdaBoost algorithm and a set of 

new speech features. Our experimental results indicate that 
a nearly optimal classifier can be designed automatically 

with computational con屮lexity coirq)arable to the manually- 
optimized classifier. We investigated the contribution of 

each feature for speech/non-speech classification and the 
effects of spectral subtraction. After evaluating the 

performance of the AdaBoost method to design a speech/ 
non-speech classifier, we suggested a new efficient speech 
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detection method using different kinds of features 

including estimated speech band energies and MFCC- 
based spectral distortion intended for speech recognition. 
When spectral subtraction is used, the low-band speech log 
energy has a relatively large weight and the spectral 

distortion feature has a small weight. For speech signals 

in babble noise environments, the method reduced 20-50% 
of miss errors for the same false alarm rate. Our proposed 

method gives good classification accuracy by combining 
simple linear base classifiers.

V. Appendix

5.1. 자ie AdaBoost Algorithm
Consider that m samples xz- s X, i= 1,…，m and the 

corresponding labels 乃 e y are given where X denotes 

the TV-dimensional feature space and Y is given as (-1+1). 

First initialize the weight of each sample uniformly as 

D\(i) = \!m. For each round t =1, add a new base 

classifier to the final classifier by performing the following 
steps[9]:
* Train a new base classifier using distribution Dt,
* Get the base classifier 九：X―汛.

v Choose % c 97.

* Compute a new weight for each sample A+i(0 by

D( ] 0)= 0(，)exp(pjM(x,)) ⑴
乙

where Zt is a normalization factor chosen so that Dt+\ is 
a probability distribution.

The final classifier is given by

H (x) = sign(Z «, (h, (x) + 5)) (2)

where S is a parameter used to control the hit and false 

alarm rates. According to[9], the at is chosen as

匕也(X,) (4)

5.2. Special Subtraction Based on Minimum 
Tracking

Speech signals are windowed by a Hamming window 
of length 30 ms shifting every 10 ms and transformed into 
the frequency domain to produce N coefficients 

where is the frame index and k is the frequency bin index 
running from 0 to M2+L For each frequency bin, the 

signal spectrum 0(侦)is obtained by smoothing tempo­

rally as

甘 0 k) = a.S(t-U) + (I-«1)|| k) II1 2 (5)

1. A + n.=-log(-一一-) (3)2 1-r, v 7

The spectrum is then smoothed in the spectral domain 
as

_ “2 〜
SQ,k、)= (t^k — i) (6)

t=-m

where h(i) is a smoothing filter to prevent abrupt changes 
along the frequency axis and I is the filter length. The 
noise spectrum for spectral subtraction is estimated by 

tracking the minimum of the smoothed signal spectrum 
within a specified frame period

N(t, k) = /3 min S(t~ i, k) (7)

where 8 is a constant to estimate the average from the 

minimum statistics. Then the speech spectrum is estimated 
by subtracting the noise spectrum from the signal spectrum

玄。,幻=X。, k) max {1 -(百(£, ©Ne 幻 / 5(z, ,

幻/15(小)|"} (8)

where 〃 is introduced to prevent negative spectra. The 

£ is set to 0.5 so that we can use spectral magnitude 

subtraction, which is known to yield better performance 

[13]. g(t,k) The is a smoothed over-subtraction factor 

obtained by filtering SNR-dependent instantaneous over­
subtraction factors

where
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（幻（幻点知）（9）

where y(^) is the predefined over-subtraction curve. In this 
work we use the following function

/W = (l + A (10)

where A is an over-subtraction scale factor, fs is the 

sampling frequency and fc is the cut-off frequency. For our 

experiments we used the following set of parameters 

% =0.8187,% =0.9048, 丿8 = 1, 专 = 0.5, 〃드0.05, 人 = 4, 

九=8000,兀=400, 7V = 256, "=125, / = 5, h = [l/9 
2/9 3/9 2/9 1/9].
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