• 제목/요약/키워드: Specular Reflectance

검색결과 29건 처리시간 0.022초

Specular Reflectance Measurements of Dielectric Plates in Millimeter Frequency Range

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Kang, Kwang Yong;Yoon, Dae Hwan;Park, Sung Won
    • Journal of electromagnetic engineering and science
    • /
    • 제18권2호
    • /
    • pp.78-87
    • /
    • 2018
  • This paper describes specular reflectance measurements of dielectric plates in three waveguide frequency bands: D-band (110-170 GHz), G-band (140-220 GHz), and J-band (220-325 GHz). The transmit (Tx) part of the proposed specular reflectance measurement system is stationary, while the receive (Rx) part and the material under test (MUT) holder are concentric-rotating with a 2:1 speed ratio for specular reflectance measurements. In specular reflectance measurements, the first step measures the specular reflection coefficients of an MUT and a metal plate on the MUT holder located at the center of the Tx and Rx parts, and the second step calculates the specular reflectance defined by the specular reflection power (i.e., intensity) of the MUT normalized to that of the metal plate. Multiple reflection effects between the Tx and Rx antennas and the MUT on the measured specular reflectance are minimized by averaging out the multiple specular reflectances measured with changing the separation distance between the two antennas by ${\lambda}/8$ intervals. Measurement results of the perpendicular-polarized specular reflectance of commonly used dielectric plates are verified by comparing those with the analytic results and show that the results measured over the overlapped frequency range of the D-/G-bands and at the boundary frequency of the G-/J-bands agree well with the results for the other band, respectively.

재귀반사 특성을 이용한 경면물체의 3차원 형상 측정 (Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection)

  • 박원식;유영기;조형석
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF

태양열 집광판의 반사율 변화 연구 (A Study of Reflectance Variations of Solar Concentrators)

  • 이현진;김종규;이상남;강용혁;이성욱;박문희
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.107-114
    • /
    • 2010
  • Understanding of reflectance of solar concentrators is important for assessing concentration performance. However inaccurate data about refractive indices of constituent materials and dust accumulation on the surface often prevent figuring out reflectance variations. The current study proposes an approach calculating concentrator reflectance based on the refractive index of glass obtained from reflectance and transmittance measurements. This approach improved accuracy of solar-averaged reflectance from 2.9% to 0.4% compared to the use of existing reference data. Reflectance variations with incidence angles are negligible up to $60^{\circ}C$ at various glass thicknesses. When concentrators are contaminated with dust during 2 months specular reflectance loss of vertically exposed concentrators is less than 7%. However for horizontally exposed concentrators the loss significantly increases up to 40% while dependence of reflectance on incidence angles becomes strong. Measurements of hemispherical reflectance indicate that 80 percentage of the loss comes from scattering rather than absorption by dust. Data of refractive index and reflectance provided in the current study will help estimate or model the concentrated solar flux.

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

AFM and Specular Reflectance IR Studies on the Surface Structure of Poly(ethylene terephthalate) Films upon Treatment with Argon and Oxygen Plasmas

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.134-140
    • /
    • 2004
  • Semi-crystalline poly(ethylene terephthalate) (PET) film surfaces were modified with argon and oxygen plasmas by radio-frequency (RF) glow discharge at 240 mTorr/40 W; the changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared microspectroscopy (IMS). Under our operating conditions, analysis of the AFM images revealed that longer plasma treatment results in significant ablation on the film surface with increasing roughness, regardless of the kind of plasma used. The basic topographies, however, were different depending upon the kind of gas used. The specular reflectance analysis showed that the ablative mechanisms of the argon and oxygen plasma treatments are entirely different with one another. For the Ar-plasma-treated PET surface, no observable difference in the chemical structure was observed before and after plasma treatment. On the other hand, the oxygen-plasma-treated PET surface displays a significant decrease in the number of aliphatic C-H groups. We conclude that a constant removal of material from the PET surface occurs when using the Ar-plasma, whereas preferential etching of aliphatic C-H groups, with respect to, e.g. , carbonyl and ether groups, occurs upon oxygen plasma.

레이저 반사광을 이용한 미세 표면 거칠기 측정 알고리즘에 관한 연구 (Study on Algorithm of Micro Surface Roughness Measurement Using Laser Reflectance Light)

  • 최규종;김화영;안중환
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.347-353
    • /
    • 2008
  • Reflected light can be decomposed into specular and diffuse components according to the light reflectance theory and experiments. The specular component appears in smooth surfaces mainly, while the diffuse one is visible in rough surfaces mostly. Therefore, each component can be used in forming their correlations to a surface roughness. However, they cannot represent the whole surface roughness seamlessly, because each formulation is merely validated in their available surface roughness regions. To solve this problem, new approaches to properly blend two light components in all regions are proposed in this paper. First is the weighting function method that a blending zone and rate can be flexibly adjusted, and second is the neural network method based on the learning from the measurement data. Simulations based on the light reflectance theory were conducted to examine its performance, and then experiments conducted to prove the enhancement of the measurement accuracy and reliability through the whole surface roughness regions.

혼성 반사면의 반사 특성 추출 및 형상 복구(II) (Shape recovery and extraction the reflection properties of hybrid reflectance surface(II))

  • 김태은;최종수
    • 전자공학회논문지S
    • /
    • 제34S권6호
    • /
    • pp.21-29
    • /
    • 1997
  • In this paper, we propose a new approach for recovering 3-D shape and extracting the reflectance properties of surface from intensity images. Photometric stereo method(PSM) is genrally based on the direct illumination. In this paper, the reflectance function is derived by interoduceing the indirect diffuse illumination in PSM and then applied to hybrid reflectance model which consists of two components; the lambertian and the specular reflectance. Under the hybrid reflectance model and the indirect diffuse illumination circumstance, the reflectance properties of sample surface can be extracting by normal sampler and then 3-D shape of an object can be recovered based on extracting reflectance properties. This method is rapid because of using the reference table and simplifies the restriction condition about the reflectance function existing in prior studies. Th erecovery efficiency in our method is better than that in prior studies. Also, this method is applied to various types of surfaces by defining general reflectance function.

  • PDF

링 조명에 의한 BGA 볼의 3차원 형상 인식 (Shape Recognition of a BGA Ball using Ring Illumination)

  • 김종형
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.960-967
    • /
    • 2013
  • Shape recognition of solder ball bumps in a BGA (Ball Grid Array) is an important issue in flip chip bonding technology. In particular, the semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding as the density of balls has increased dramatically. The difficulty of this issue comes from specular reflection on the metal ball. Shape recognition of a metal ball is a very realproblem for computer vision systems. Specular reflection of the metal ball appears, disappears, or changes its image abruptly due to tiny movementson behalf of the viewer. This paper presents a practical shape recognition method for three dimensional (3-D) inspection of a BGA using a 5-step ring illumination device. When the ring light illuminates the balls, distinctive specularity images of the balls, which are referred to as "iso-slope contours" in this paper, are shown. By using a mathematical reflectance model, we can drive the 3-D shape information of the ball in aquantitative manner. The experimental results show the usefulness of the method for industrial application in terms of time and accuracy.

물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구 (A Study on the Influence of the Object's Reflectance on the Active Range Finder)

  • 이철원;나석주
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

Global analysis of heat transfer in Si CZ furnace with specular and diffuse surfaces

  • Hahn, S.H.;Tsukada, T.;Hozawa, M.;Maruyama, S.;Imaishi, N.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1998년도 PROCEEDINGS OF THE 14TH KACG TECHNICAL MEETING AND THE 5TH KOREA-JAPAN EMGS (ELECTRONIC MATERIALS GROWTH SYMPOSIUM)
    • /
    • pp.45-48
    • /
    • 1998
  • For the single crystal growth of silicon, a global analysis of heat transfer in a CZ furnace was carried out using the finite element method, where the radiative heat transfer between the surfaces that possess both specular and/or diffuse reflectance components was taken into account, and then the effect of the specular reflection of the crystal and/or melt on the CZ crystal growth was numerically investigated.

  • PDF