• Title/Summary/Keyword: Spectrum unfolding

Search Result 15, Processing Time 0.025 seconds

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

A New Approach on the Correction for Compton Escape Component in X-Ray Unfolding Algorithm

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.925-930
    • /
    • 1995
  • A new approach on the correction for Compton escape component in X-ray unfolding algorithm was investigated to obtain more accurate X-ray source spectrum. The X-ray detector used in this study was a planar type HPGe detector(EG&G ORTEC, GLP-32340/13-P-LP) whose energy response has been blown and ISO narrow beam series were employed as source spectrum. At lower energy Part of measured X-ray spectrum including the correction for Compton escape component more accurate unfolded spectrum was obtained by letting down the starting energy level of the collection in existing spectrum correction procedure to consider multiple scattering effects. It is, from this study, concluded that accurate correction for Compton escape component is needed in X-ray unfolding procedure since Compton scattering becomes more important as incident X-ray energies increase.

  • PDF

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang;HongJoo Kim;Phan Quoc Vuong;Nguyen Duc Ton;Uk-Won Nam;Won-Kee Park;JongDae Sohn;Young-Jun Choi;SungHwan Kim;SukWon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1021-1030
    • /
    • 2023
  • We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.

Neutron spectrum unfolding using two architectures of convolutional neural networks

  • Maha Bouhadida;Asmae Mazzi;Mariya Brovchenko;Thibaut Vinchon;Mokhtar Z. Alaya;Wilfried Monange;Francois Trompier
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2276-2282
    • /
    • 2023
  • We deploy artificial neural networks to unfold neutron spectra from measured energy-integrated quantities. These neutron spectra represent an important parameter allowing to compute the absorbed dose and the kerma to serve radiation protection in addition to nuclear safety. The built architectures are inspired from convolutional neural networks. The first architecture is made up of residual transposed convolution's blocks while the second is a modified version of the U-net architecture. A large and balanced dataset is simulated following "realistic" physical constraints to train the architectures in an efficient way. Results show a high accuracy prediction of neutron spectra ranging from thermal up to fast spectrum. The dataset processing, the attention paid to performances' metrics and the hyper-optimization are behind the architectures' robustness.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

The Calculation of Response Matrix of 2-Dimensional Radiation Monitoring System Using EGS4 Simulation (EGS4 simulation을 이용한 2차원 방사선준위 분포측정 시스템의 Response Matrix 계산)

  • Kim, S.H.;Han, S.H.;Kang, H.D.;Kim, J.C.;Park, I.K.;Choi, Y.S.;Lee, Y.B.;Lee, J.M.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 1997
  • In this study an EGS4 simulation code was used to calculate real energy spectrum from measured ${\gamma}$-ray energy spectrum obtained using 2-dimensional radiation monitoring system. As a result, the $39{\times}39$ response matrix was calculated the energy range of 0.1 to 2 MeV which energy interval of 50 keV The real energy spectrum for Co-60 radioisotope was calculated using inverse of response matrix. It was confirmed that the calculated response matrix was useful to the analysis of the measured energy spectrum for the radiation monitoring system.

  • PDF

Estimation of Neutron Energy Spectrum of Cf-252 using Single Bonner Sphere with TLD-600 and TLD-700 (단일 보너구와 TLD-600 및 TLD-700을 이용한 Cf-252의 중성자 에너지 스펙트럼 평가)

  • Kim, Sunghwan;Cheon, Jongkyu;Lee, Jae Jin;Nam, Uk-Won
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.223-226
    • /
    • 2013
  • We designed a single polyethylene bonner sphere with several thermo-luminescence dosimeters (TLD), for measurement of neutron energy spectrum. For the separation of the neutron dosage in the neutron-gamma mixed field, we used 21 ea TLD-600s and TLD-700s, respectively. Because, TLD-600 is sensitive to neutron and gamma rays, and, TLD-700 is sensitive only to gamma-rays, we could determine the each dose by neutron and gamma rays. The neutron response function of the bonner sphere with TLDs was calculated by MCNPX (ver. 2.5.0) Monte Carlo simulation in the energy range from $10^{-1}$ to 20 MeV. For the Cf-252 standard neutron source in KRISS, we could estimate the neutron energy spectrum by unfolding method using the response function.

A Study on the Analysis of 89Sr and 90Sr with Cerenkov Radiation and Liquid Scintillation Counting Method (첼렌코프광과 액체섬광계수법을 이용한 89Sr 및 90Sr 분석에 대한 연구)

  • Lee, Myung-Ho;Chung, Geun-Ho;Cho, Young-Hyun;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • An accurate and simple analytical technique for $^{89}Sr$ and $^{90}Sr$, overcoming the demerits of the conventional method, has been developed with extraction chromatography and liquid scintillation counting. The Sr fraction was separated from hindrance elements with oxalate coprecipitation or cation exchange resin and purified with Sr-Spec column. With liquid scintillation counter, $^{89}Sr$ was measured by Cerenkov radiation method, and $^{90}Sr$ was measured by spectrum unfolding method. The developed radioactive strontium separation method was validated by application to the IAEA-reference material (IAEA-375, Soil) and radioactive waste samples.

Hydrophobic Core Variant Ubiquitin Forms a Molten Globule Conformation at Acidic pH

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.676-683
    • /
    • 2004
  • The conformational properties of hydrophobic core variant ubiquitin (Val26 to Ala mutation) in an acidic solution were studied. The intrinsic tryptophan fluorescence emission spectrum, far-UV and near-UV circular dichroic spectra, the fluorescence emission spectrum of 8-anilinonaphthalene-1-sulfonic acid in the presence of V26A ubiquitin, and urea-induced unfolding measurements indicate this variant ubiquitin to be in the partially folded molten globule conformation in solution at pH 2. The folding kinetics from molten globule to the native state was nearly identical to those from the unfolded state to the native state. This observation suggests that the equilibrium molten globule state of hydrophobic core variant ubiquitin is an on-pathway folding intermediate.