DOI QR코드

DOI QR Code

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data

물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발

  • Choi, Hyun Joon (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Park, Hyo Jun (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Yoo, Do Hyeon (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Kim, Byoung-Chul (Center for Ionizing Radiation, Korea Research Institute of Standards and Science) ;
  • Yi, Chul-Young (Center for Ionizing Radiation, Korea Research Institute of Standards and Science) ;
  • Min, Chul Hee (Department of Radiation Convergence Engineering, Yonsei University)
  • 최현준 (연세대학교 방사선융합공학과) ;
  • 박효준 (연세대학교 방사선융합공학과) ;
  • 유도현 (연세대학교 방사선융합공학과) ;
  • 김병철 (한국표준과학연구원 방사선표준센터) ;
  • 이철영 (한국표준과학연구원 방사선표준센터) ;
  • 민철희 (연세대학교 방사선융합공학과)
  • Received : 2015.12.21
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

연구배경: 세기조절방사선치료와 같이 고선량을 암조직에 정밀하게 전달할 수 있는 방사선 치료기술이 개발됨에 따라, 보다 정확한 선량평가 기술의 개발이 요구되고 있다. 본 연구에서는 선형가속기에서 발생된 광자선의 물질투과율 정보를 통해 간접유도방식으로 에너지스펙트럼을 예측할 수 있는 기술의 개발을 목적으로 한다. 재료 및 방법: 의료용 선형가속기를 사용한 측정과 몬테칼로 전산모사를 통해 감쇠물질의 두께에 따른 X-선의 투과율이 평가되었으며, 이와 더불어 단일에너지에 의한 이온함의 반응함수가 결정되었다. 최종적으로 Unfolding 방법을 사용하는 HEOROW 프로그램을 통해 고선량률의 치료용 선형가속기에서 발생된 광자선의 에너지스펙트럼이 유도되었다. 본 연구에서 실험을 위해 Elekta Synergy Flatform 선형가속기가 사용되었으며, 몬테칼로 방법을 사용하는 Geant4 전산모사 프로그램이 사용되었다. 결과 및 논의: 감쇠물질의 두께에 따른 X-선 투과율과 몬테칼로 전산모사를 통해 계산된 X-선 투과율의 비교 결과 0.43%의 평균제곱근오차가 확인된다. 물질투과정보를 통해 간접적으로 유도된 에너지스펙트럼은 몬테칼로 전산모사를 통해 직접적으로 계산된 에너지스펙트럼과 비교분석 되었으며, 피크위치 및 평균에너지의 오차가 각각 0.066 MeV와 0.03 MeV로 평가되었다. 하지만 보다 정확한 에너지스펙트럼을 예측하기 위해서는 다양한 감쇠물질의 사용과 에너지스펙트럼 유도프로그램의 정밀도 향상을 위한 추가적인 연구가 필요할 것으로 판단된다. 결론: 본 연구를 통해 확인된 물질투과율 기반의 에너지스펙트럼 측정 기술은 에너지가 높고 선량률이 높기 때문에 광자선을 직접적으로 측정하는 것이 제한적인 의료용 선형가속기에 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. Dong KR, Park BS, Kim SS, Kweon DC, Goo EH, Chung WK. Target motion analysis of the respiratory gated guided radiotherapy in liver cancer patients using 4D-CT. Journal of Radiation Protection and Research. 2010;35(2):63-68.
  2. Lee J, Kang J, Kim J, Kim B, Jeong D. Analysis by synthesis for estimation of dose calculation with gMOCREN and GEANT4 in medical image. Journal of Radiation Protection and Research. 2012;37(3):146-148. https://doi.org/10.14407/jrp.2012.37.3.146
  3. Nath R, Biggs PJ, Bova FJ, Ling CC, Purdy JA, van de Geijn J, Weinhous MS. AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med. Phys. 1994;21(7):1093-1121. https://doi.org/10.1118/1.597398
  4. Stathakis S, Esquivel C, Quino LV, Myers P, Calvo O, Mavroidis P, Gutierrez AN, Papanikolaou N. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2012;1:78-87. https://doi.org/10.4236/ijmpcero.2012.13011
  5. Huang PH, Kase KR, Bjarngard BE. Spectral characterization of 4 MV bremsstrahlung by attenuation analysis. Med. Phys. 1981; 8(3):368-374. https://doi.org/10.1118/1.594959
  6. Ahuja SD, Steward PG, Roy TS, Slessinger ED. Estimated spectrum of a 4-MV therapeutic beam. Med. Phys. 1986;13(3):368-373. https://doi.org/10.1118/1.595878
  7. Catala A, Francois P, Bonnet J, Scouarnec C. Reconstruction of 12 MV bremsstrahlung spectra from measured transmission data by direct resolution of the numeric system AF=T. Med. Phys. 1995;22(1):3-10. https://doi.org/10.1118/1.597523
  8. Shimozato T, Tabushi K, Kitoh S, Shiota Y, Hirayama C, Suzuki S. Calculation of 10 MV x-ray spectra emitted by a medical linear accelerator using the BFGS quasi-Newton method. Phys. Med. Biol. 2006;52(2):515. https://doi.org/10.1088/0031-9155/52/2/014
  9. Yi CY, Chun KJ, Kim IJ, Kim BC, Kim JH et al. Development of measurement standard of medical ionizing radiation. 1711007782. Korea Research Institute of Standards and Science, Daejeon, Republic of Korea. 2015;233-235.
  10. Hinson WH, Bourland JD. Spectral reconstruction of high energy photon beams for kernel based dose calculations. Med. phys. 2002;29(8): 1789-1796. https://doi.org/10.1118/1.1494831
  11. Matzke M. The HEPROW program system. NEA-1666/01. Nuclear Energy Agency, Boulogne-Billancourt, France. 2004;18-25.

Cited by

  1. An effective dose assessment technique with NORM added consumer products using skin-point source on computational human phantom vol.118, 2016, https://doi.org/10.1016/j.apradiso.2016.08.014
  2. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products vol.129, 2017, https://doi.org/10.1016/j.apradiso.2017.07.064
  3. Determining the energy spectrum of clinical linear accelerator using an optimized photon beam transmission protocol vol.46, pp.7, 2016, https://doi.org/10.1002/mp.13569