• Title/Summary/Keyword: Spectrum Resource

Search Result 244, Processing Time 0.03 seconds

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.

Policy Design to Vitalize Spectrum Sharing Ecosystem : A System Dynamics Approach (인과지도에 기반한 주파수공유 생태계 활성화 정책 설계)

  • Song, Hee Seok;Kim, Jae Kyung;Kim, Taehan
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.109-122
    • /
    • 2014
  • Demand of spectrum resource is tremendously increasing recently and this trend will continues in the future due to the wide spread of IT services based on cloud computing and Internet of Things technology and as well as smart devices. Recently, spectrum sharing technology has drawn attention to the spectrum policy makers as a promising way to overcome the shortage problem of scarce spectrum resource. To succeed in commercialization of spectrum sharing technology, it is necessary to prospect the future business ecosystem of spectrum sharing and develop appropriate policies and laws at the same time along with the advance of spectrum sharing technology. The purpose of this paper is to analyze casual relationships between enablers in future business ecosystem of spectrum sharing and propose policies to vitalize spectrum sharing ecosystem based on a system dynamics causal map proposed in the previous research. With the causal map and system dynamics method, it is possible to analyze feedback loops exist in the business ecosystem of spectrum sharing and build policies which optimize positive dynamics in business ecosystem of spectrum sharing. As a result, policy leverages were found in four areas; spectrum supply, spectrum demand, spectrum quality and technology, and spectrum transaction cost. For those policy leverages, 13 policies were identified and intervention timing for each policy was discussed. Finally, the promotion policies of government and market participants to vitalize spectrum sharing ecosystem were discussed.

Connection Admission Control Using RA Based Dynamic Spectrum Hole Grouping in Multi-classes Cognitive Radio Networks (다중 클래스 인지 라디오 망에서 RA기반 동적 스펙트럼 홀 그룹핑에 의한 연결 수락 제어)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.219-225
    • /
    • 2022
  • In this paper, we propose a CAC exploring a RA based dynamic spectrum hole grouping for secondary users' QoS enhancement in multi-classes cognitive radio networks. The RA based dynamic spectrum hole grouping uses SU multi-classes overlaying spectrum structure suggested here. Multiclass SUs are divided into real and non real, and real SUs have a priority for resource utilization against non real. The amount of resource required by real SUs is supported by Wiener prediction and the dynamic spectrum hole grouping, and that required by non real SU is supported by the remained available amount without prediction. In the simulations, we compare the proposed CAC performances using the dynamic spectrum hole grouping in terms of SU connection's blocking(dropping) rate and resource utilization efficiency according to multi-classes traffic characteristics, and then we show the proposed CAC can guarantee the desired QoS of multi-classes secondary users.

Resource Allocation in Spectrum Sharing ad-hoc Cognitive Radio Networks Based on Game Theory: An Overview

  • Abdul-Ghafoor, Omar B.;Ismail, Mahamod;Nordin, Rosdiadee;El-Saleh, Ayman Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.2957-2986
    • /
    • 2013
  • The traditional approach of fixed spectrum allocation to licensed networks has resulted in spectrum underutilisation. Cognitive radio technology is envisioned as a promising solution that can be used to resolve the ineffectiveness of the fixed spectrum allocation policy by accessing the underutilised spectrum of existing technologies opportunistically. The implementation of cognitive radio networks (CRNs) faces distinct challenges due to the fact that two systems (i.e., cognitive radio (CR) and primary users (PUs)) with conflicting interests interact with each other. Specially, in self-organised systems such as ad-hoc CRNs (AHCRNs), the coordination of spectrum access introduces challenges to researchers due to rapid utilisation changes in the available spectrum, as well as the multi-hop nature of ad-hoc networks, which creates additional challenges in the analysis of resource allocation (e.g., power control, channel and rate allocation). Instead, game theory has been adopted as a powerful mathematical tool in analysing and modelling the interaction processes of AHCRNs. In this survey, we first review the most fundamental concepts and architectures of CRNs and AHCRNs. We then introduce the concepts of game theory, utility function, Nash equilibrium and pricing techniques. Finally, we survey the recent literature on the game theoretic analysis of AHCRNs, highlighting its applicability to the physical layer PHY, the MAC layer and the network layer.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

An Heuristic for Joint Assignments of Power and Subcarriers in Cognitive Radio Networks (인지라디오 네트워크에서 전력과 부반송파 할당을 위한 휴리스틱)

  • Paik, Chun-Hyun
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.65-77
    • /
    • 2012
  • With the explosivley increasing demand in wireless telecommunication service, the shortage of radio spectrum has been worsen. The traditional approach of the current fixed spectrum allocation leads to spectrum underutilization. Recently, CR (Cognitive Radio) technologies are proposed to enhance the spectrum utilization by allocating dynamically radio resources to CR Networks. In this study, we consider a radio resource(power, subcarrier) allocation problem for OFDMA-based CRN in which a base station supports a variety of CUs (CRN Users) while avoiding the radio interference to PRN (Primary Radio Network). The problem is mathematically formulated as a general 0-1 IP problem. The optimal solution method for the IP problem requires an unrealistic execution time due to its complexity. Therefore, we propose an heuristic that gives an approximate solution within a reasonable execution time.

A study on Spectrum Allocation for Very High Speed Wireless Access Network in 5GHz Band (5GHz대역 초고속 무선랜의 주파수분배에 관한 연구)

  • 허보진;이재욱;박덕규
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.474-479
    • /
    • 2003
  • We discussed the usage of a radio resource, the spectrum allocation and the trends of policy about 5㎓ band in other countries, We studied about the technical regulation on high speed wireless access system and the spectrum allocation of ISM bard in 5㎓ bard for other countries. We also analyzed the efficient use of radio resource, the method of frequency sharing and the calculation of spec01m requirement in noel to progress the high speed wireless access system In addition We proposed the schemes of domestic spectrum allocation for high speed wireless access system at 5㎓ band

  • PDF

Point-to-Point Communication of Cognitive Radios via Underlay Spectrum Sharing (언더레이 주파수 공유를 이용한 인지무선 통신장치의 점대점 통신방법)

  • Lee, Hye-Won;Han, Kwang-Hun;Hwang, Young-Woo;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.697-703
    • /
    • 2009
  • Cognitive radios are typically known to exploit vacant spectrum resources in order not to interfere with primary communication systems. However, cognitive radios may not be able to secure a clear spectrum band in a bustling spectrum band. Underlay spectrum sharing provides a way to cope with such a spectrum sharing problem. Cognitive radios share the same spectrum band with the spectrum licensees, i.e., primary users, by adjusting signal transmission power so as not to severely deteriorate the performance of the primary users. We propose an underlay spectrum sharing policy leveraging uplink spectrum resource to be used in a cellular network. A pair of end terminals attempts to establish a direct point-to-point link, and perform as cognitive radios in the sense that they share the uplink radio resource of other primary users. We formulate the transmit power constraints of the cognitive radios and propose a practical uplink band sharing framework. Our simulation results demonstrate that such an uplink sharing underlay direct link can enhance the throughput performance of point-to-point link with low overhead.