• Title/Summary/Keyword: Spectral tomography

Search Result 69, Processing Time 0.021 seconds

Optical Monitoring of Tumors in BALB/c Nude Mice Using Optical Coherence Tomography

  • Song, Hyun-Woo;Lee, Sang-Won;Jung, Myung-Hwan;Kim, Kye Ryung;Yang, Seungkyoung;Park, Jeong Won;Jeong, Min-Sook;Jung, Moon Youn;Kim, Seunghwan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.91-96
    • /
    • 2013
  • We report a method for optical monitoring of tumors in an animal model using optical coherence tomography (OCT). In a spectral domain OCT system, a superluminescent diode light source with a full width of 66 nm at half maximum and peak wavelength of 950 nm was used to take images having an axial resolution of 6.8 ${\mu}m$. Cancer cells of PC-3 were cultured and inoculated into the hypodermis of auricle tissues in BALB/c nude mice. We observed tumor formation and growth at the injection region of cancer cells in vivo and obtained the images of tumor mass center and sparse circumferences. On the $5^{th}$ day from an inoculation of cancer cells, histological images of the tumor region using cross-sectional slicing and dye staining of specimens were taken in order to confirm the correlation with the high resolution OCT images. The OCT image of tumor mass compared with normal tissues was analyzed using its A-scan data so as to obtain a tissue attenuation rate which increases according to tumor growth.

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

Current and Future Technologies for a Gastrointestinal Endoscopy (소화기 내시경의 기술 현황과 전망)

  • Chee, Young-Joon;Woo, Jih-Wan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.335-343
    • /
    • 2010
  • This article presents a review of technologies for an endoscope. The classification according to the clinical applications and the imaging modalities are summarized. The major parts are focused on describing the gastrointestinal endoscope's structures and mechanisms. The details of the image enhanced endoscopic techniques, such as NBI (narrow band imaging), OCT (optical coherence tomography), and EUS (endoscopic ultrasound), are also explained. Finally, the trend of NOTES (natural orifice transluminal endoscopic surgery) which is new fusion technology in the field of endoscopic diagnosis and surgery is introduced.

FSF laser Development for the optical communication diagnosis and medical tomography application (광통신용 및 의용 계측을 위한 FSF Laser의 개발)

  • 지명훈;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.514-517
    • /
    • 2002
  • We developed Frequency-shifted feedback laser using AOM inside the cavity. The feedback loop of the laser is formed with the first-order diffracted light of the AOM to output mirror. It is shown that the FSF laser output has spectral output called“chirped frequency comb”with an ultrafast frequency chirp rate of several hundreds of PHz/s. It can know the range using chirped frequency comb in the optical range measurement that is FSF laser as source.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes

  • Kim, You Na;Shin, Joong Won;Sung, Kyung Rim
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.470-477
    • /
    • 2018
  • Purpose: To investigate the relationship between the progression of visual field (VF) loss and changes in lamina cribrosa depth (LCD) as determined by spectral-domain optical coherence tomography (SD-OCT) enhanced depth imaging in patients with primary open angle glaucoma (POAG). Methods: Data from 60 POAG patients (mean follow-up, $3.5{\pm}0.7$ years) were included in this retrospective study. The LCD was measured in the optic disc image using SD-OCT enhanced depth imaging scanning at each visit. Change in the LCD was considered to either 'increase' or 'decrease' when the differences between baseline and the latest two consecutive follow-up visits were greater than the corresponding reproducibility coefficient value ($23.08{\mu}m$, as determined in a preliminary reproducibility study). All participants were divided into three groups: increased LCD (ILCD), decreased LCD (DLCD), and no LCD change (NLCD). The Early Manifest Glaucoma Trial criteria were used to define VF deterioration. Kaplan-Meier survival analysis and Cox's proportional hazard models were performed to explore the relationship between VF progression and LCD change. Results: Of the 60 eyes examined, 35.0% (21 eyes), 28.3% (17 eyes), and 36.7% (22 eyes) were classified as the ILCD, DLCD, and NLCD groups, respectively. Kaplan-Meier survival analysis showed a greater cumulative probability of VF progression in the ILCD group than in the NLCD (p < 0.001) or DLCD groups (p = 0.018). Increased LCD was identified as the only risk factor for VF progression in the Cox proportional hazard models (hazard ratio, 1.008; 95% confidence interval, 1.000 to 1.015; p = 0.047). Conclusions: Increased LCD was associated with a greater possibility of VF progression. The quantitative measurement of LCD changes, determined by SD-OCT, is a potential biomarker for the prediction of VF deterioration in patients with POAG.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Tomographic Interpretations of Visible Emissions from the Axisymmetric Partially Premixed Flames (단층진단법을 이용한 축대칭 부분예혼합 화염의 자발광 스펙트럼 해석에 관한 연구)

  • Ha, Kwang-Soon;Choi, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.769-776
    • /
    • 2000
  • Visible spectral characteristics of cross-sectional emissions from a partially premixed methane/air and propane/air flames have been investigated. An optical train with a two-axis scanning mirror system was used to record line-of-sight emission spectra from 354nm to 618nm, and inversion technique was adapted to obtain cross-sectional emission spectra. By analyzing the reconstructed emission spectra, cross-sectional intensities of CH and $C_2$ radicals were separated from the background emissions. The blue flame edge and yellow flame edge were also obtained by image processing technique for edge detection with color photograph of flame. These edges were compared with radial distributions of CH, $C_2$ radicals and background emissions. The CH radicals were observed at blue flame edge. The background emissions were generated by soot precursor at upstream of flame and by soot at downstream of flame. The $C_2$ radicals in propane/air flame were observed more than those in methane/air flame.