• 제목/요약/키워드: Spectral tomography

검색결과 69건 처리시간 0.028초

Optical Monitoring of Tumors in BALB/c Nude Mice Using Optical Coherence Tomography

  • Song, Hyun-Woo;Lee, Sang-Won;Jung, Myung-Hwan;Kim, Kye Ryung;Yang, Seungkyoung;Park, Jeong Won;Jeong, Min-Sook;Jung, Moon Youn;Kim, Seunghwan
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.91-96
    • /
    • 2013
  • We report a method for optical monitoring of tumors in an animal model using optical coherence tomography (OCT). In a spectral domain OCT system, a superluminescent diode light source with a full width of 66 nm at half maximum and peak wavelength of 950 nm was used to take images having an axial resolution of 6.8 ${\mu}m$. Cancer cells of PC-3 were cultured and inoculated into the hypodermis of auricle tissues in BALB/c nude mice. We observed tumor formation and growth at the injection region of cancer cells in vivo and obtained the images of tumor mass center and sparse circumferences. On the $5^{th}$ day from an inoculation of cancer cells, histological images of the tumor region using cross-sectional slicing and dye staining of specimens were taken in order to confirm the correlation with the high resolution OCT images. The OCT image of tumor mass compared with normal tissues was analyzed using its A-scan data so as to obtain a tissue attenuation rate which increases according to tumor growth.

K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구 (3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images)

  • 김번영;이승완;임도빈
    • 한국방사선학회논문지
    • /
    • 제13권4호
    • /
    • pp.523-530
    • /
    • 2019
  • 본 연구의 목적은 광자계수검출기 기반 스펙트럼 전산화단층촬영을 이용하여 K-각 영상을 획득하고, 이를 통해 3차원 융합진단영상을 구현하여 임상적 이용 가능성을 평가하고자 하였다. 실험을 통한 K-각 영상획득을 위해 스펙트럼 전산화단층촬영 시스템을 이용하였다. 희석된 iodine과 gadolinium 조영제가 주입된 6개의 튜브를 돼지고기에 삽입하여 팬텀을 제작하였다. 100 kVp 관전압과 $500{\mu}A$ 관전류 조건에서 발생된 X-선을 이용하였으며, iodine과 gadolinium의 K-각 흡수에너지를 고려한 35 및 52 keV에 저 에너지 문턱값을 설정하여 K-각 영상을 획득하였다. 융합진단영상은 일반적인 전산화단층촬영 영상과 스펙트럼 전산화단층촬영을 통해 획득한 iodine 및 gadolinium 영상을 정합하여 획득하였다. 두 가지 조영제 기반 융합진단영상의 CNR은 일반적인 CT보다 평균적으로 6.76-14.9배 높았으며, 3차원 융합진단영상은 각 조영제의 물질 지도 정보를 제공할 수 있었다. 따라서 본 연구에서 제안하는 방법을 통해 전산화단층영상의 화질을 향상시킬 수 있으며 특정 물질의 추가적인 정보를 제공을 통해 진단의 효율성을 증가시킬 수 있다.

소화기 내시경의 기술 현황과 전망 (Current and Future Technologies for a Gastrointestinal Endoscopy)

  • 지영준;우지환
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.335-343
    • /
    • 2010
  • This article presents a review of technologies for an endoscope. The classification according to the clinical applications and the imaging modalities are summarized. The major parts are focused on describing the gastrointestinal endoscope's structures and mechanisms. The details of the image enhanced endoscopic techniques, such as NBI (narrow band imaging), OCT (optical coherence tomography), and EUS (endoscopic ultrasound), are also explained. Finally, the trend of NOTES (natural orifice transluminal endoscopic surgery) which is new fusion technology in the field of endoscopic diagnosis and surgery is introduced.

광통신용 및 의용 계측을 위한 FSF Laser의 개발 (FSF laser Development for the optical communication diagnosis and medical tomography application)

  • 지명훈;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.514-517
    • /
    • 2002
  • 광 공진기내에 음향광학소자(AOM)를 사용하여 FSF(Frequency-shifted feedback) 레이저를 개발하였다. 공진기는 1차 회절광에 의한 feedback loop로 구성된다. FSF 레이저 출력은 수백 PHz/s의 초고속 주파수 chirp을 갖는“chirped frequency comb”이라 불리는 주파수 출력을 보여준다. FSF 레이저를 광원으로 광거리 계측에서는 chirped 주파수 comb을 이용하여 거리를 알 수 있다.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • 제24권10호
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술 (Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications)

  • 이문환;박희연;이경수;김세웅;김지훈;황재윤
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.429-440
    • /
    • 2023
  • 이 연구는 초음파 광학 영상 기반의 다중 모달 영상 기술에 대한 최신 연구 동향과 응용 가능성에 대해 조사하였다. 초음파 영상은 실시간 영상 기능을 가지고 있으며 인체에 상대적으로 안전한 특성으로 인해 의료 분야에서 다양한 질병의 진단에 사용되고 있다. 그러나 초음파 영상은 해상도가 낮은 한계가 있어 진단 정확도를 향상시키기 위해 다른 광학 영상과의 결합을 통한 다중 모달 영상 기술 개발 연구가 진행되고 있다. 특히 초음파 광학 영상 기반의 다중 모달 영상 기술은 각각의 영상 기법의 장점을 극대화하고 단점을 보완함으로써 질병 진단 정확도를 향상시킬 수 있는 수단으로 사용되고 있다. 이러한 기술은 초음파의 실시간 영상 기능과 광간섭 단층 영상 융합 기술, 초음파 광음향 다중 모달 영상 기술, 초음파 형광 다중 모달 영상 기술, 초음파 형광 시정수 다중 모달 영상 기술 및 초음파 분광 다중 모달 영상 기술 등 다양한 형태로 제안되고 있다. 본 연구에서는 이러한 초음파 광학 영상 기반의 다중 모달 영상 기술의 최신 연구 동향을 소개하고, 의학 및 바이오 분야에서의 응용 가능성을 조사하였다. 이를 통해 초음파와 광학 기술의 융합이 어떻게 진행되고 있는지에 대한 통찰력을 제공하고, 의료 분야에서의 진단 정확도 향상을 위한 새로운 접근 방식에 대한 기반을 마련하였다.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Relationship between Progressive Changes in Lamina Cribrosa Depth and Deterioration of Visual Field Loss in Glaucomatous Eyes

  • Kim, You Na;Shin, Joong Won;Sung, Kyung Rim
    • Korean Journal of Ophthalmology
    • /
    • 제32권6호
    • /
    • pp.470-477
    • /
    • 2018
  • Purpose: To investigate the relationship between the progression of visual field (VF) loss and changes in lamina cribrosa depth (LCD) as determined by spectral-domain optical coherence tomography (SD-OCT) enhanced depth imaging in patients with primary open angle glaucoma (POAG). Methods: Data from 60 POAG patients (mean follow-up, $3.5{\pm}0.7$ years) were included in this retrospective study. The LCD was measured in the optic disc image using SD-OCT enhanced depth imaging scanning at each visit. Change in the LCD was considered to either 'increase' or 'decrease' when the differences between baseline and the latest two consecutive follow-up visits were greater than the corresponding reproducibility coefficient value ($23.08{\mu}m$, as determined in a preliminary reproducibility study). All participants were divided into three groups: increased LCD (ILCD), decreased LCD (DLCD), and no LCD change (NLCD). The Early Manifest Glaucoma Trial criteria were used to define VF deterioration. Kaplan-Meier survival analysis and Cox's proportional hazard models were performed to explore the relationship between VF progression and LCD change. Results: Of the 60 eyes examined, 35.0% (21 eyes), 28.3% (17 eyes), and 36.7% (22 eyes) were classified as the ILCD, DLCD, and NLCD groups, respectively. Kaplan-Meier survival analysis showed a greater cumulative probability of VF progression in the ILCD group than in the NLCD (p < 0.001) or DLCD groups (p = 0.018). Increased LCD was identified as the only risk factor for VF progression in the Cox proportional hazard models (hazard ratio, 1.008; 95% confidence interval, 1.000 to 1.015; p = 0.047). Conclusions: Increased LCD was associated with a greater possibility of VF progression. The quantitative measurement of LCD changes, determined by SD-OCT, is a potential biomarker for the prediction of VF deterioration in patients with POAG.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • 제51권2호
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

단층진단법을 이용한 축대칭 부분예혼합 화염의 자발광 스펙트럼 해석에 관한 연구 (Tomographic Interpretations of Visible Emissions from the Axisymmetric Partially Premixed Flames)

  • 하광순;최상민
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.769-776
    • /
    • 2000
  • Visible spectral characteristics of cross-sectional emissions from a partially premixed methane/air and propane/air flames have been investigated. An optical train with a two-axis scanning mirror system was used to record line-of-sight emission spectra from 354nm to 618nm, and inversion technique was adapted to obtain cross-sectional emission spectra. By analyzing the reconstructed emission spectra, cross-sectional intensities of CH and $C_2$ radicals were separated from the background emissions. The blue flame edge and yellow flame edge were also obtained by image processing technique for edge detection with color photograph of flame. These edges were compared with radial distributions of CH, $C_2$ radicals and background emissions. The CH radicals were observed at blue flame edge. The background emissions were generated by soot precursor at upstream of flame and by soot at downstream of flame. The $C_2$ radicals in propane/air flame were observed more than those in methane/air flame.